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Abstract: The “cocktail party” problem—how a listener perceives speech in noisy environments—is 

typically studied using speech (multi-talker babble) or noise maskers. However, realistic cocktail 
party scenarios often include background music (e.g., coffee shops, concerts). Studies investigating 

music’s effects on concurrent speech perception have predominantly used highly controlled synthetic 

music or shaped noise, which do not reflect naturalistic listening environments. Behaviorally, familiar 

background music and songs with vocals/lyrics inhibit concurrent speech recognition. Here, we 

investigated the neural bases of these effects. While recording multichannel EEG, participants listened 

to an audiobook while popular songs (or silence) played in the background at a 0 dB signal-to-noise 

ratio. Songs were either familiar or unfamiliar to listeners and featured either vocals or isolated 

instrumentals from the original audio recordings. Comprehension questions probed task engagement. 
We used temporal response functions (TRFs) to isolate cortical tracking to the target speech envelope 

and analyzed neural responses around 100 ms (i.e., auditory N1 wave). We found that speech 

comprehension was, expectedly, impaired during background music compared to silence. Target 
speech tracking was further hindered by the presence of vocals. When masked by familiar music, 
response latencies to speech were less susceptible to informational masking, suggesting concurrent 
neural tracking of speech was easier during music known to the listener. These differential effects of 
music familiarity were further exacerbated in listeners with less musical ability. Our neuroimaging 

results and their dependence on listening skills are consistent with early attentional-gain mechanisms 

where familiar music is easier to tune out (listeners already know the song’s expectancies) and 

thus can allocate fewer attentional resources to the background music to better monitor concurrent 
speech material. 

Keywords: auditory evoked potentials (ERPs); speech in noise (SIN); familiarity; music perception 

1. Introduction 

Listeners are constantly faced with the challenge of listening to speech in noisy environ-
ments. This so-called “cocktail party” problem is often studied using noise or multi-talker 
babble maskers. However, many realistic cocktail party scenarios also involve music (e.g., 
coffee shops, concerts), which is not often considered in studies of auditory scene analysis. 
The effect of background music on concurrent speech/linguistic tasks is mixed and depen-
dent on many factors, including type of music, participant characteristics, task structure 
(reviewed by [1]), and cognitive faculties. For example, music presented concurrently with a 
memorization task impairs performance, but only for listeners who prefer to study without 
background music [2]. Fast-tempo background music increases spatial processing speed 
and linguistic processing accuracy [3], but can also disrupt reading comprehension [4]. 
Music with vocals also more negatively affects concurrent tasks across various cognitive 
modalities [2,5–10]. Linguistic content in the masker introduces informational masking, 
which in turn interferes with cognitive resources needed to complete the task. 
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In typical (i.e., speech-on-speech) cocktail party tasks, the familiarity of a talker can 
be advantageous for speech recognition [11,12] when the familiar voice is either the target 
or the masker [13]. A familiar voice is retained implicitly [12], which allows for more 
efficient processing of novel words or sentences spoken in that voice [14]. However, the 
role of familiarity for music in perceptual–cognitive tasks is not well known. It is also 
worth noting that many studies define “familiarity” inconsistently (e.g., exposure training 
of naïve listeners versus songs that listeners already know), which limits comparisons 
between results. Still, familiar music maskers can improve various linguistic behavioral 
measures [15,16], but may be detrimental to foreign language learning [17]. Previous work 
from our lab [5] has shown a negative familiarity effect of background noise on concurrent 
speech recognition. In a music-on-speech cocktail party task, we found speech recognition 
performance was worse during familiar compared to unfamiliar music maskers, likely due 
to the increased cognitive load of the familiar music (i.e., those songs were more distracting). 
However, that prior work was solely behavioral and did not provide insight into the neural 
underpinnings of those perceptual–cognitive effects. 

Besides indexical attributes of the signal, demographic properties of the listener also 
modulate cocktail party perception [18]. In particular, music expertise has been widely 
shown to alter auditory-cognitive brain structure and function, providing a “musician 
advantage” in various listening skills [19]. This is especially evident in speech-in-noise 
tasks where musicians show better degraded speech perception and more successful 
suppression of acoustic distractors [20–24]. Musicians’ improved speech-in-noise abilities 
might result from their superiority juggling multiple auditory streams [21,25] and lesser 
susceptibility to informational masking than their non-musician peers [24,26]. Musicians 
have more experience with auditory stream segregation (e.g., parsing a melody from 
harmonies, hearing one’s own melody in an orchestra), which in turn seems to enhance the 
parsing of degraded speech [27]. However, in contrast to speech-on-speech, musicians are 
more affected by background music than non-musicians [28]. Importantly, the “musician 
advantage” for speech-in-noise listening is not dependent on formal musical training. 
Mankel and Bidelman [29] demonstrated similar effects in highly musical people without 
formal musical training, indicating that superior cocktail party listening skills may be 
attributed more to general listening abilities rather than music experiences/training, per se. 

Extending this prior work, the current study sought to further investigate the role of 
background music familiarity and presence of vocals on concurrent speech perception. In 
a variant of the cocktail party task, participants listened to an audiobook (speech) in the 
presence of popular music maskers that varied in their familiarity to the listener and content 
of the original audio recording (i.e., with or without vocals). Here, we refer to familiarity as 
acquired in repeated exposure in everyday life, including on the radio. Our design departs 
from previous studies investigating the effects of music-on-speech intelligibility which have 
predominantly used synthesized music or music-like stimuli [30,31] which, though easier to 
control, are not as ecologically valid as the popular music used here. Participants answered 
comprehension questions about the story to ensure task engagement with target speech 
material. We simultaneously recorded multichannel EEG and measured neural tracking to 
the speech envelopes using temporal response functions (TRFs) [32]. In accordance with 
our previous behavioral work [5], we hypothesized that the perception and neural tracking 
of speech would diminish (i.e., lower comprehension scores, TRFs with weaker amplitudes 
and longer latencies) when concurrent background music was familiar to listeners and 
when it contained vocals. These findings would suggest that speech perception suffers 
from a concurrent linguistic masker even from a different domain (i.e., music), as well as 
stronger attentional (mis)allocation to background music when it is familiar to the listener. 

2. Materials and Methods 
2.1. Participants 

The sample included n = 17 young adults ages 21–32 (M = 25, SD = 2.6 years, 
4 male). This sample size is comparable with previous studies investigating continu-
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ous speech processing with TRFs [33–35]. 12 participants reported having musical training 
(M = 10.25 years, SD = 5.1). All participants showed audiometric thresholds better than 
20 dB HL (octave frequencies, 250–8000 Hz) and reported English as their native language. 
Listeners were primarily right-handed (mean 75% laterality using the Edinburgh Handed-
ness Inventory [36]). Each was paid for their time and gave written informed consent in 
compliance with a protocol approved by the IRB at the University of Memphis. 

2.2. Stimuli and Task 

During EEG recording, we measured neural speech tracking and comprehension by 
presenting a continuous audiobook in different background music conditions. The audio-
book (taken from librivox.org, accessed on 9 August 2021) was Doctor by Murray Leinster, 
read by a male speaker. Silences longer than 300 milliseconds were shortened to decrease 
extended silence in the stimulus while still sounding like natural speech [37]. The speech 
signal was RMS amplitude normalized and separated into 20 successive 2 min segments. 

Music stimuli were a subset of those used in Brown and Bidelman [5], which had 
been previously identified as being familiar (“Just Dance” by Lady Gaga”) or unfamiliar 
(“Play with Fire” by Hilary Duff) to a cohort of young, normal-hearing listeners. We used 
a machine learning algorithm trained to separate instrumental and vocal tracks (lalal.ai) 
to isolate the instrumentals from the full unprocessed song [5]. All music files (two songs 
each with the full song and isolated instrumentals) were sampled at 44100 Hz, converted to 
mono for diotic presentation, and RMS amplitude normalized after removing silences to 
equate the sound level across clips. 

For each participant, the 20 audiobook segments were presented sequentially, sepa-
rated into four runs (totaling eight minutes of listening per condition). Each run contained 
five audiobook segments randomly presented with each song condition (familiar with 
vocals, familiar without vocals, unfamiliar with vocals, and unfamiliar without vocals) 
and in silence. In all, listeners heard each song condition four times. Participants were 
instructed to listen to the audiobook and ignore the background music. Each trial was two 
minutes, after which participants answered one comprehension question presented on a 
computer screen (20 questions total across the full experiment). After completing the task, 
participants rated each song on a scale from 1 (Not at all familiar) to 5 (Extremely familiar) to 
gauge prior familiarity with the music stimuli. 

After completing the EEG task, participants completed the Profile of Music Percep-
tion Skills (PROMS) [38] to measure their musical listening skills. We have previously 
shown that high-PROMS-scoring individuals (“musical sleepers”) have enhanced speech 
processing akin to trained musicians despite having no formal musical training [29]. The 
PROMS contains eight subtests focusing on different musical domains (e.g., rhythm, melody, 
timbre, etc.). For each subtest, participants heard two tokens (e.g., two melodies) and in-
dicated whether they were the same or different. The scores were on a 5-point Likert 
scale, where correctly identifying “definitely same/different” was given one point and 
“probably same/different” was worth one-half point. The maximum possible test score 
was 80 (8 subtests, 10 items each). 

2.3. EEG Recording Procedures 

Participants were seated in an electrically shielded, sound-attenuated booth for the 
duration of the experiment. Continuous EEG recordings were obtained from 64 channels 
aligned in the 10-10 system [39] and digitized using a sample rate of 500 Hz (SynAmps 
RT amplifiers; Compumedics Neuroscan, Charlotte, NC, USA). Contact impedances were 
maintained <10 kΩ. Music and speech stimuli were each presented diotically at 70 dB 
SPL through electromagnetically shielded ER-2 insert headphones (Etymotic Research, Elk 
Grove Village, IL, USA), resulting in a signal-to-noise ratio of 0 dB. Stimulus presentation 
was controlled with a custom MATLAB program (v. 2021a; MathWorks, Natick, MA, 
USA) and routed through a TDT RZ6 digital signal processor (Tucker-Davis Technologies, 
Alachua, FL, USA). EEGs were re-referenced to average mastoids and pre-processed in 

https://lalal.ai
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accordance with the recommendations provided by Crosse, et al. [40]. Data from 0 to 
1000 milliseconds after the onset of each two min epoch were discarded to avoid transient 
brain responses in the subsequent analysis [40]. Epochs were then concatenated for each of 
the five conditions, resulting in eight minutes of continuous data per condition. 

2.4. Behavioral Data Analysis 

We logged the comprehension question response at the end of each presentation. 
Questions were scored as a binary “correct” or “incorrect” label. 

2.5. Electrophysiological Data Analysis: Temporal Response Functions (TRFs) 

We analyzed continuous neural tracking to the speech signal using the Temporal 
Response Function toolbox in MATLAB [32]. The TRF is a linear function representing the 
(deconvolved) impulse response to a continuous stimulus. To measure EEG tracking to the 
speech, we extracted the temporal envelope of the audiobook via the Hilbert transform. 
EEG data were down-sampled to 250 Hz, then filtered between 1 and 30 Hz to isolate 
cortical activity to the low-frequency speech envelope. EEG and stimulus signals were 
both z-score normalized. As with conventional event-related potentials (ERPs), TRFs were 
computed for each participant to account for inherent inter-subject variability in neural 
response tracking [40]. We used 6-fold cross-validation to derive TRFs per condition. Ridge 
regression [41] was used to identify the optimal λ smoothing parameter of the forward 
model for the speech-only condition. Model tuning was conducted using the speech-only 
condition to optimize the TRF to the clean (unmasked) speech. We used a fronto-central 
channel cluster (F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C2) to further optimize the model fit to 
canonical topography of auditory ERPs. For each participant, the optimal λ was taken as 
the ridge parameter yielding the highest reconstruction of simulated neural response (i.e., 
correlation r-value between actual EEG and TRF-derived responses). We then used each 
participant’s optimal λ parameter to derive TRFs for all other conditions. This approach 
preserves response consistency within subjects while avoiding model overfitting [40]. The 
resulting TRF waveforms represent the EEG signal at each electrode changes in response to 
a unit change in the speech stimulus envelope. 

We analyzed TRFs (i.e., RMS amplitude and latency) between 100–150 ms correspond-
ing to the “N1” wave of the canonical auditory ERP (see Figure 1). The N1 was selected as 
it reflects the early arrival of sound information in auditory cortex and is also modulated 
by attention [42–44]. Previous EEG studies have also demonstrated that noise has the 
largest effect on speech TRFs within this time window [45]. To further investigate possible 
hemisphere differences, we created two homologous channel clusters over front right (Fz, 
F2, F4, F6, F8, FC6, FT8) and front left (Fz, F1, F3, F5, F7, FC5, FT7) scalp regions. 

2.6. Statistical Analyses 

Statistics were run in R using the lme4 package [46]. For all analyses, we used mixed-
effects models with fixed factors of familiarity (2 levels: familiar, unfamiliar) and song 
condition (2 levels; with vocals, without vocals). Subjects and trial served as random 
factors (where applicable). Because the behavioral response was a binary score (correct 
vs. incorrect), we analyzed those data using a generalized linear mixed-effects model 
ANOVA with binomial link function. Note that the Wald statistic is used to determine 
significant factor(s) effects for these models instead of conventional F-statistics (used in 
lme4 package; [46]). Peak amplitudes and latencies were normally distributed and thus 
analyzed using conventional linear mixed models and F-statistics. Multiple comparisons 
were corrected with Tukey adjustments. For all measures (score, latency, and amplitude), 
there were no hemisphere differences (all p values > 0.17), so subsequent analyses used 
data pooled between the two electrode clusters. 
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Figure 1. Grand average TRF waveforms (plotted at channel FCz) across music masker conditions. 
The model was trained using a fronto-central cluster of electrodes (top left). Red circle = region of 
interest for analyses corresponding to the auditory N1. 
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were corrected with Tukey adjustments. For all measures (score, latency, and amplitude), 
there were no hemisphere differences (all p values > 0.17), so subsequent analyses used 
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3. Results 
3.1. Behavioral Data 

Participants showed stark differences in their familiarity ratings across music selec-
tions (t(16) = 19.13, p < 0.001), validating our first stimulus manipulation. Speech compre-
hension scores were subject to a strong masking effect; comprehension was (expectedly) 
better for speech presented in silence compared to all other music-masked conditions 
(t(338) = 3.23, p = 0.001). An ANOVA based on the generalized binomial model showed no 
interaction between familiarity and song condition (χ2(1, N = 17) = 1.26, p = 0.26). There 
was no main effect of familiarity (χ2(1, N = 17) = .41, p = 0.52). There was, however, a sig-
nificant effect of song condition (χ2(1, N = 17) = 5.42, p = 0.02), whereby behavioral perfor-
mance was overall poorer during vocal vs. non-vocal music maskers (Figure 2). These 
results confirm the effectiveness of music in masking target speech recognition as well as 
the added hinderance of music containing vocal (linguistic) information [5]. 

Figure 1. Grand average TRF waveforms (plotted at channel FCz) across music masker conditions. 
The model was trained using a fronto-central cluster of electrodes (top left). Red circle = region of 
interest for analyses corresponding to the auditory N1. 

3. Results 
3.1. Behavioral Data 

Participants showed stark differences in their familiarity ratings across music selections 
(t(16) = 19.13, p < 0.001), validating our first stimulus manipulation. Speech comprehension 
scores were subject to a strong masking effect; comprehension was (expectedly) better for 
speech presented in silence compared to all other music-masked conditions (t(338) = 3.23, 
p = 0.001). An ANOVA based on the generalized binomial model showed no interaction 
between familiarity and song condition (χ2(1, N = 17) = 1.26, p = 0.26). There was no main 
effect of familiarity (χ2(1, N = 17) = 0.41, p = 0.52). There was, however, a significant effect of 
song condition (χ2(1, N = 17) = 5.42, p = 0.02), whereby behavioral performance was overall 
poorer during vocal vs. non-vocal music maskers (Figure 2). These results confirm the 
effectiveness of music in masking target speech recognition as well as the added hinderance 
of music containing vocal (linguistic) information [5]. 
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Figure 2. Speech comprehension scores during background music as a function of music familiarity 
and vocal condition. Speech recognition was poorer during concurrent vocal vs. non-vocal music. 
Error bars represent ± 1 s.e.m. 

3.2. Electrophysiological Data 
TRF latency and amplitude are shown across conditions in Figure 3. Music-masked 

speech showed longer latencies than speech presented in silence (t(83) = 3.40, p = 0.001). 
An ANOVA conducted on TRF latencies revealed an interaction between familiarity and 
condition (F(1,48) = 6.18, p = 0.016, η2 = 0.11). Post hoc tests showed this interaction was 
attributable to longer speech-evoked TRF latencies in music with vocals than instrumen-
tals alone (t(48) = 2.54, p = 0.015), but only in unfamiliar music. This vocal vs. instrumental 
latency difference was not observed for familiar music (p = 0.32). 

Figure 3. TRF N1 latencies and magnitudes across music masking conditions. (A) Latencies were 
longer for songs with vocals than instrumentals only during unfamiliar music. (B) Neural tracking 
of target speech was also stronger during music with vocals in both familiarity conditions. Error 
bars represent ± 1 standard error of the mean. 

In contrast to latency measures, TRF amplitudes were not affected by masking and 
concurrent music (masking effect: t(83) = 0.11, p = 0.91). An ANOVA conducted on TRF 
RMS amplitudes, indicating the strength of speech tracking, showed a sole main effect of 
condition (F(1,48) = 5.13, p = 0.028, η2 = 0.10); responses were larger in music with vocals 
as compared to instrumentals. There was no effect of familiarity (F(1,48) = 1.45, p = 0.23) 
nor a condition*familiarity interaction (F(1,48) = 1.28, p = 0.26). 
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and vocal condition. Speech recognition was poorer during concurrent vocal vs. non-vocal music. 
Error bars represent ±1 s.e.m. 
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3.2. Electrophysiological Data 

TRF latency and amplitude are shown across conditions in Figure 3. Music-masked 
speech showed longer latencies than speech presented in silence (t(83) = 3.40, p = 0.001). 
An ANOVA conducted on TRF latencies revealed an interaction between familiarity and 
condition (F(1,48) = 6.18, p = 0.016, η2 = 0.11). Post hoc tests showed this interaction was 
attributable to longer speech-evoked TRF latencies in music with vocals than instrumentals 
alone (t(48) = 2.54, p = 0.015), but only in unfamiliar music. This vocal vs. instrumental 
latency difference was not observed for familiar music (p = 0.32). 

Brain Sci. 2022, 12, x FOR PEER REVIEW 6 of 13 

Figure 2. Speech comprehension scores during background music as a function of music familiarity 
and vocal condition. Speech recognition was poorer during concurrent vocal vs. non-vocal music. 
Error bars represent ± 1 s.e.m. 

3.2. Electrophysiological Data 
TRF latency and amplitude are shown across conditions in Figure 3. Music-masked 

speech showed longer latencies than speech presented in silence (t(83) = 3.40, p = 0.001). 
An ANOVA conducted on TRF latencies revealed an interaction between familiarity and 
condition (F(1,48) = 6.18, p = 0.016, η2 = 0.11). Post hoc tests showed this interaction was 
attributable to longer speech-evoked TRF latencies in music with vocals than instrumen-
tals alone (t(48) = 2.54, p = 0.015), but only in unfamiliar music. This vocal vs. instrumental 
latency difference was not observed for familiar music (p = 0.32). 

Figure 3. TRF N1 latencies and magnitudes across music masking conditions. (A) Latencies were 
longer for songs with vocals than instrumentals only during unfamiliar music. (B) Neural tracking 
of target speech was also stronger during music with vocals in both familiarity conditions. Error 
bars represent ± 1 standard error of the mean. 

In contrast to latency measures, TRF amplitudes were not affected by masking and 
concurrent music (masking effect: t(83) = 0.11, p = 0.91). An ANOVA conducted on TRF 
RMS amplitudes, indicating the strength of speech tracking, showed a sole main effect of 
condition (F(1,48) = 5.13, p = 0.028, η2 = 0.10); responses were larger in music with vocals 
as compared to instrumentals. There was no effect of familiarity (F(1,48) = 1.45, p = 0.23) 
nor a condition*familiarity interaction (F(1,48) = 1.28, p = 0.26). 

Figure 3. TRF N1 latencies and magnitudes across music masking conditions. (A) Latencies were 

longer for songs with vocals than instrumentals only during unfamiliar music. (B) Neural tracking of 
target speech was also stronger during music with vocals in both familiarity conditions. Error bars 

represent ±1 standard error of the mean. 

In contrast to latency measures, TRF amplitudes were not affected by masking and 
concurrent music (masking effect: t(83) = 0.11, p = 0.91). An ANOVA conducted on TRF 
RMS amplitudes, indicating the strength of speech tracking, showed a sole main effect of 
condition (F(1,48) = 5.13, p = 0.028, η2 = 0.10); responses were larger in music with vocals as 
compared to instrumentals. There was no effect of familiarity (F(1,48) = 1.45, p = 0.23) nor a 
condition*familiarity interaction (F(1,48) = 1.28, p = 0.26). 

3.3. Neural Speech Tracking as a Function of Listeners’ Musicality 

We next asked whether speech-envelope tracking amidst music (as indexed via TRFs) 
varied as a function of listeners’ music-listening skills (as indexed by their PROMS scores). 
Previous studies demonstrate that individuals who lack formal music training but who 
nonetheless have superior auditory skills show advantages with speech identification 
and cocktail party processing [29,47]. As in Mankel and Bidelman [29], we divided our 
participants into two groups—“high PROMS” and “low PROMS”—using a median split 
of their PROMs musicality scores. The groups did not differ in age (t(15) = 1.28, p = 0.22), 
years of education (t(15) = 0.82, p = 0.43), or sex (Fisher’s exact test; p = 0.294). The high 
PROMS group had 11.4 (SD = 5.1) years of musical training as compared to the low PROMS 
group (M = 3.6, SD = 5.2 years; t(15) = 3.13, p = 0.01). To account for this difference in 
training, we ran our omnibus ANOVA models with the three factors of interest (familiarity, 
vocals condition, and PROMS level) and years of training as a covariate. In addition to 
dichotomizing the musicality variable [48], we also ran models treating PROMS score as a 
continuous variable. 

3.3.1. Behavioral Data 

We first tested for differences between PROMS scores and familiarity ratings to assess 
whether high vs. low musicality listeners were more/less familiar with the stimuli used 
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in our experiment. There was no group difference for either the familiar (t(15) = 1.63, 
p = 0.125) or unfamiliar (t(15) = 1.24, p = 0.236) stimuli, indicating listeners were similarly 
(un)familiar with our song selections. 

Analysis of speech comprehension during the EEG task revealed a significant condition 
x group interaction (χ2(1) = 4.12, p = 0.042), as well as a marginal familiarity x condition x 
group interaction (χ2(1) = 3.63, p = 0.056) (Figure 4). Group differences were also partially 
driven by years of musical training (χ2(1) = 11.15, p = 0.001). To help interpret these complex 
interactions, we conducted separate 2-way ANOVAs by group to assess the impact of music 
familiarity and condition on speech recognition in low vs. high PROMS listeners. High 
PROMS listeners’ comprehension was invariant to condition and familiarity effects (all 
p values > 0.065). However, the low PROMS group showed a familiarity x condition 
interaction (χ2(1) = 3.63, p = 0.042). Low musicality listeners showed poorer comprehension 
in music with vocals than without vocals but only during unfamiliar music (z = 2.44, 
p = 0.01). This vocal effect was not present for familiar music (z = 2.20, p = 0.69). When 
musicality was treated as continuous variable, there were no significant effects of any 
variable of interest on comprehension score (all p values > 0.311). 
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listeners performed worse in music with vocals only in the unfamiliar music condition. However, 
more musical listeners did not show any effects of familiarity or song condition. PROMS = Profile of 
Music Perception Skills test. Error bars represent ±1 standard error of the mean. 

3.3.2. Electrophysiological Results 

TRF latencies showed a significant interaction between familiarity and condition 
(F(1,45) = 6.00, p = 0.018, η2 = 0.12), where latencies for vocals were longer than instru-
mentals for only the unfamiliar music. There was no effect of musicality (F(1,15) = 1.85, 
p = 0.194). However, when treating musicality as a continuous variable, there was a famil-
iarity x musicality interaction (F(1,45) = 10.17, p = 0.003, η2 = 0.18). TRF latencies were 
longer for unfamiliar music (t(45) = 2.60, p = 0.013) for the less musical listeners (i.e., lower 
PROMS scores) but were longer for familiar songs in higher PROMS scoring individuals 
(t(45) = 2.63, p = 0.012). 

For TRF amplitudes, the omnibus ANOVA revealed an overall effect of condition 
(F(1,45) = 4.88, p = 0.032), where all listeners showed larger amplitudes for music with vocals 
(Figure 5B). There were no effects of familiarity or PROMS group (all p values > 0.1). There 
was also not an effect of musical training (F(1,15) = 0.03, p = 0.88), indicating again that the 
condition effect is not driven by experience. Treating musicality as a continuous variable 
showed no significant effects for any of the variables of interest (all p values > 0.067). 
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4. Discussion 

As an innovative extension of the cocktail party problem, we compared speech com-
prehension and neural tracking of target speech amidst various music backdrops. We also 
manipulated the familiarity and vocals (i.e., song with lyrics or only instrumentals) of the 
music to evaluate how content and listeners’ familiarity of concurrent music backgrounds 
affect concurrent speech perception and its neural processing. Perception and neural en-
coding of speech was worse during music with vocals than solely instrumentals. However, 
the impact of vocals on speech coding varied based on the familiarity of the background 
music. These findings indicate the monitoring of speech concurrent with music containing 
vocals might be more challenging for unfamiliar tunes. Our data suggest it is more difficult 
(i.e., harder for the brain to suppress the music masker) during certain types (unfamiliar, 
vocal) of music backdrops, likely through increased susceptibility to linguistic interference 
and/or misallocation of attention between speech and music streams. Moreover, these 
effects were exacerbated when accounting for musicality, suggesting listeners’ inherent 
auditory skills also impact their cocktail party speech processing. In accordance with 
our previous behavioral study [5], we found speech comprehension was further impaired 
in music containing vocals than in instrumental music. We attribute this decline to the 
informational masking introduced by the linguistic content of the vocals [49–51]. 

At the neural level, TRFs showed that brain tracking of speech was modulated by both 
familiarity and song condition. Overall, the presence of music prolonged TRF latencies 
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to speech, which is consistent with well-known masking effects observed in previous 
auditory EEG studies [45,52]. More critically, we found that condition and familiarity had 
an interactive effect on speech-evoked TRFs; neural latencies were strongly modulated by 
vocals relative to instrumental music, but only for unfamiliar music. Responses were also 
larger during concurrent vocal compared to instrumental music. Intuitively, larger evoked 
responses are typically associated with a stronger representation or encoding of the speech 
signal (i.e., “bigger is better”) [53]. However, we found here that songs with vocals showed 
worse comprehension and longer neural latencies in conjunction with larger N1 responses. 
Indeed, TRF latencies were negatively correlated with speech recognition performance. 
It is well-established that larger N1 amplitudes are a marker of increased attention [42], 
analogous to the M100 peak in TRFs derived from neuromagnetic recordings [54]. Thus, the 
larger N1 responses to target speech we find in these difficult music conditions may reflect 
attentional load due to the increased listening demand of parsing speech from concurrent 
(especially unfamiliar) music. Larger N1 may also reflect increased listening effort [55]. 
Indeed, overexaggerated N1 to speech is also indicative of increased listening effort during 
speech processing, as observed in older adults with cognitive impairments [56]. The 
stronger effects on speech processing we observe during unfamiliar vocal music might 
therefore reflect the influences of selective attention [42], with increased effort needed to 
maintain that attention in more difficult listening conditions. This may also be comparable 
to a recent study that found a larger N400 during reading comprehension masked by 
music, reflecting increased semantic processing effort [57]. Still, the latency of neural effects 
observed here (~100 milliseconds) suggests that music challenges speech perception much 
earlier in the processing hierarchy. 

Interestingly, we show that speech tracking at the “cocktail party” varies depending 
on the inherent musical skills of the listener. We found that low PROMS listeners were more 
impacted by unfamiliar music than the high PROMS group. Several studies have showed 
that more familiar music facilitates concurrent linguistic tasks by increasing arousal [58] and 
generating expectancies [16,52]. Musical ability is associated not only with speech-in-noise 
processing advantages [24,29,59], but also parsing complex auditory scenes [25,60]. Indeed, 
there is some evidence that trained musicians also more successfully deploy attention 
in auditory and even non-auditory perceptual tasks [24,61,62], including those related to 
cocktail party listening [21]. Moreover, non-musicians are more susceptible to informational 
and linguistic masking [21,26]—though see [63]. Here, low PROMS listeners may have 
been more distracted by the unfamiliar background music as a more challenging listening 
condition, which then becomes exacerbated by the presence of vocals. In this sense, less 
musical listeners (i.e., those with poorer auditory perceptual skills) might experience 
increased informational masking compared to their more musical peers. Our findings 
thus support notions that musical ability impacts cocktail party speech listening and one’s 
susceptibility to informational masking [21,26,64] but extend prior work by demonstrating 
such effects are not necessarily attributable to musical experience, per se, but instead 
depend on inherent listening abilities. 

Our results can be explained by certain attentional load theories [65], which posit 
that selective attention is comprised of a passive perception mechanism and cognitive 
control mechanism. In a more demanding listening situation, more cognitive resources are 
recruited, meaning that there is less cognitive capacity to suppress distractors. In this study, 
listening to the target speech in more distracting music maskers (i.e., unfamiliar/vocal 
songs) was a difficult task, creating a larger cognitive load. This results in a diminished 
capacity to suppress the music masker, which makes it more difficult to attend to the 
target speech. The directional differences between the musicality groups also implies that 
cognitive load is variable and dependent on listening expertise. Under this interpretation, 
speech perception in unfamiliar music may have created a larger cognitive load for less 
musical listeners than for the high PROMS group, resulting in longer N1 latencies and 
worse comprehension scores. 
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In our previous study [5], we found that comprehension was worse in unfamiliar music, 
which is the opposite of our current results. Though the two studies used the same music 
maskers, the task here was more complex, assessing speech comprehension rather than 
target word recognition (as in Brown and Bidelman, 2022). Additionally, the task in this 
study was completed post-stimulus while the previous word-recognition task required 
increased online processing (i.e., monitoring key words in sentences). These task differences 
may contribute to the contradictory findings on familiarity effects. Indeed, the specific 
nature of the task can yield differential effects of music on concurrent speech processing, 
sometimes with opposite directions of effects [5,15–17,59]. 

It is of note that most prior studies used years of formal music training (self-reported) 
as a metric for defining musicians and non-musicians, while we solely used aptitude 
scores. Though high- and low-PROMS groups were separable based on their years of 
music training, musicality group differences remained significant while controlling for 
training, meaning that the effects found in this study likely result from some combination of 
experience and natural auditory skills. Our data are consistent with emerging notions that 
listeners’ inherent, rather than acquired, musicality affect their speech-in-noise processing 
abilities [29,47]. 

In this experiment, we used pop songs as music maskers in order to preserve the 
ecological validity of the study. The trade-off of doing so is that the stimuli are less 
controlled than lab-synthesized sounds, and the two songs used here have inherently 
different acoustic qualities. Previous studies show that features such as tempo and loudness 
affect concurrent reading comprehension [4], and the stimuli used in this study were 
matched in tempo (beats per minute) and intensity (RMS). Furthermore, both songs were 
of the same genre and featured a female vocalist. Importantly, the behavioral and neural 
effects found here differ as a function of listeners’ musicality. Such differential effects 
across listeners suggest that acoustic differences cannot be the sole driver of our neural 
effects and consequently must be rooted in psychological rather than physical attributes of 
the stimulus. 

5. Conclusions 

In summary, our combined behavioral and neuroimaging results demonstrate that 
speech tracking is negatively affected both by familiarity and the presence of vocals in 
concurrent music. Furthermore, we show that these effects are modulated by musical ability, 
whereby less-musical listeners are more susceptible to these different background music 
characteristics. By using naturalistic, continuous stimuli, we simulated a realistic listening 
scenario, thus further adding to our understanding of the cocktail party phenomenon. 
Our findings also qualify prior studies by suggesting that in addition to general arousal, 
familiarity and internal structure of music (e.g., presence or absence of vocals) might affect 
concurrent cognitive-linguistic processing. 

Author Contributions: Conceptualization, J.A.B. and G.M.B.; methodology, J.A.B. and G.M.B.; soft-
ware, G.M.B.; validation, J.A.B.; formal analysis, J.A.B.; investigation, J.A.B.; resources, G.M.B.; data 
curation, J.A.B.; writing—original draft preparation, J.A.B.; writing—review and editing, J.A.B. and 
G.M.B.; visualization, J.A.B.; supervision, G.M.B.; project administration, J.A.B. and G.M.B.; funding 
acquisition, G.M.B. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Institute on Deafness and Other Communication 
Disorders, grant number R01DC016267. 

Institutional Review Board Statement: The study was conducted in accordance with the Declaration 
of Helsinki, and approved by the Institutional Review Board of The University of Memphis (ID 2370, 
approved 15 April 2020). 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study. 

Data Availability Statement: Data are available upon request from the authors. 

Conflicts of Interest: The authors declare no conflict of interest. 



Brain Sci. 2022, 12, 1320 11 of 13 

References 

1. Kämpfe, J.; Sedlmeier, P.; Renkewitz, F. The impact of background music on adult listeners: A meta-analysis. Psychol. Music 2011, 
39, 424–448. [CrossRef] 

2. Crawford, H.J.; Strapp, C.M. Effects of vocal and instrumental music on visuospatial and verbal performance as moderated by 
studying preference and personality. Personal. Individ. Differ. 1994, 16, 237–245. [CrossRef] 

3. Angel, L.A.; Polzella, D.J.; Elvers, G.C. Background music and cognitive performance. Percept. Mot. Ski. 2010, 110, 1059–1064. 
[CrossRef] [PubMed] 

4. Thompson, W.F.; Schellenberg, E.G.; Letnic, A.K. Fast and loud background music disrupts reading comprehension. Psychol. 
Music 2011, 40, 700–708. [CrossRef] 

5. Brown, J.A.; Bidelman, G.M. Song properties and familiarity affect speech recognition in musical noise. Psychomusicol. Music 
Mind Brain 2022, 32, 1–6. [CrossRef] 

6. Darrow, A.A.; Johnson, C.; Agnew, S.; Fuller, E.R.; Uchisaka, M. Effect of preferred music as a distraction on music majors’ and 
nonmusic majors’ selective attention. Bull. Counc. Res. Music Educ. 2006, 170, 21–31. [CrossRef] 

7. Martin, R.C.; Wogalter, M.S.; Forlano, J.G. Reading comprehension in the presence of unattended speech and music. J. Mem. Lang. 
1988, 27, 382–398. [CrossRef] 

8. Perham, N.; Currie, H. Does listening to preferred music improve reading comprehension performance? Appl. Cogn. Psychol. 
2014, 28, 279–284. [CrossRef] 

9. Lee, E.K.; Lee, S.E.; Kwon, Y.S. The effect of lyrical and non-lyrical background music on different types of language processing— 
An ERP study. Korean J. Cogn. Sci. 2020, 31, 155–178. [CrossRef] 

10. Vasilev, M.R.; Kirkby, J.A.; Angele, B. Auditory Distraction During Reading: A Bayesian Meta-Analysis of a Continuing 
Controversy. Perspect. Psychol. Sci. 2018, 13, 567–597. [CrossRef] 

11. Souza, P.; Gehani, N.; Wright, R.; McCloy, D. The advantage of knowing the talker. J. Am. Acad. Audiol. 2013, 24, 689–700. 
[CrossRef] [PubMed] 

12. Yonan, C.A.; Sommers, M.S. The Effects of Talker Familiarity on Spoken Word Identification in Younger and Older Listeners. 
Psychol. Aging 2000, 15, 88–99. [CrossRef] [PubMed] 

13. Johnsrude, I.S.; Mackey, A.; Hakyemez, H.; Alexander, E.; Trang, H.P.; Carlyon, R.P. Swinging at a cocktail party: Voice familiarity 
aids speech perception in the presence of a competing voice. Psychol. Sci. 2013, 24, 1995–2004. [CrossRef] [PubMed] 

14. Pisoni, D.B. Long-term memory in speech perception: Some new findings on talker variability, speaking rate and perceptual 
learning. Speech Commun. 1993, 13, 109–125. [CrossRef] 

15. Feng, S.; Bidelman, G.M. Music listening and song familiarity modulate mind wandering and behavioral success during lexical 
processing. In Proceedings of the Annual Meeting of the Cognitive Science Society (CogSci 2015), Pasadena, CA, USA, 22–25 
July 2015. 

16. Russo, F.A.; Pichora-Fuller, M.K. Tune in or tune out: Age-related differences in listening to speech in music. Ear Hear. 2008, 29, 
746–760. [CrossRef] 

17. De Groot, A.M.B.; Smedinga, H.E. Let the music play!: A short-term but no long-term detrimental effect of vocal background 
music with familiar language lyrics on foreign language vocabulary learning. Stud. Second Lang. Acquis. 2014, 36, 681–707. 
[CrossRef] 

18. Bidelman, G.M.; Dexter, L. Bilinguals at the “cocktail party”: Dissociable neural activity in auditory-linguistic brain regions 
reveals neurobiological basis for nonnative listeners’ speech-in-noise recognition deficits. Brain Lang. 2015, 143, 32–41. [CrossRef] 

19. Strait, D.L.; Kraus, N. Can you hear me now? Musical training shapes functional brain networks for selective auditory attention 
and hearing speech in noise. Front. Psychol. 2011, 2, 113. [CrossRef] 

20. Bidelman, G.M.; Krishnan, A. Effects of reverberation on brainstem representation of speech in musicians and non-musicians. 
Brain Res. 2010, 1355, 112–125. [CrossRef] 

21. Bidelman, G.M.; Yoo, J. Musicians Show Improved Speech Segregation in Competitive, Multi-Talker Cocktail Party Scenarios. 
Front. Psychol. 2020, 11, 1927. [CrossRef] 

22. Coffey, E.B.J.; Mogilever, N.B.; Zatorre, R.J. Speech-in-noise perception in musicians: A review. Hear. Res. 2017, 352, 49–69. 
[CrossRef] [PubMed] 

23. Parbery-Clark, A.; Skoe, E.; Kraus, N. Musical experience limits the degradative effects of background noise on the neural 
processing of sound. J. Neurosci. 2009, 29, 14100–14107. [CrossRef] [PubMed] 

24. Yoo, J.; Bidelman, G.M. Linguistic, perceptual, and cognitive factors underlying musicians’ benefits in noise-degraded speech 
perception. Hear. Res. 2019, 377, 189–195. [CrossRef] [PubMed] 

25. Zendel, B.R.; Alain, C. Concurrent sound segregation is enhanced in musicians. J. Cogn. Neurosci. 2009, 21, 1488–1498. [CrossRef] 
[PubMed] 

26. Oxenham, A.J.; Fligor, B.J.; Mason, C.R.; Kidd, G., Jr. Informational masking and musical training. J. Acoust. Soc. Am. 2003, 114, 
1543–1549. [CrossRef] 

27. Parbery-Clark, A.; Skoe, E.; Lam, C.; Kraus, N. Musician enhancement for speech-in-noise. Ear Hear. 2009, 30, 653–661. [CrossRef] 
28. Patston, L.; Tippett, L. The Effect of Background Music on Cognitive Performance in Musicians and Nonmusicians. Music Backgr. 

Music Cogn. 2011, 29, 173–184. [CrossRef] 

http://doi.org/10.1177/0305735610376261
http://doi.org/10.1016/0191-8869(94)90162-7
http://doi.org/10.2466/pms.110.C.1059-1064
http://www.ncbi.nlm.nih.gov/pubmed/20865993
http://doi.org/10.1177/0305735611400173
http://doi.org/10.1037/pmu0000284
http://doi.org/10.2307/40319346
http://doi.org/10.1016/0749-596X(88)90063-0
http://doi.org/10.1002/acp.2994
http://doi.org/10.19066/cogsci.2020.31.4.003
http://doi.org/10.1177/1745691617747398
http://doi.org/10.3766/jaaa.24.8.6
http://www.ncbi.nlm.nih.gov/pubmed/24131605
http://doi.org/10.1037/0882-7974.15.1.88
http://www.ncbi.nlm.nih.gov/pubmed/10755292
http://doi.org/10.1177/0956797613482467
http://www.ncbi.nlm.nih.gov/pubmed/23985575
http://doi.org/10.1016/0167-6393(93)90063-Q
http://doi.org/10.1097/AUD.0b013e31817bdd1f
http://doi.org/10.1017/S0272263114000059
http://doi.org/10.1016/j.bandl.2015.02.002
http://doi.org/10.3389/fpsyg.2011.00113
http://doi.org/10.1016/j.brainres.2010.07.100
http://doi.org/10.3389/fpsyg.2020.01927
http://doi.org/10.1016/j.heares.2017.02.006
http://www.ncbi.nlm.nih.gov/pubmed/28213134
http://doi.org/10.1523/JNEUROSCI.3256-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19906958
http://doi.org/10.1016/j.heares.2019.03.021
http://www.ncbi.nlm.nih.gov/pubmed/30978607
http://doi.org/10.1162/jocn.2009.21140
http://www.ncbi.nlm.nih.gov/pubmed/18823227
http://doi.org/10.1121/1.1598197
http://doi.org/10.1097/AUD.0b013e3181b412e9
http://doi.org/10.1525/mp.2011.29.2.173


Brain Sci. 2022, 12, 1320 12 of 13 

29. Mankel, K.; Bidelman, G.M. Inherent auditory skills rather than formal music training shape the neural encoding of speech. Proc. 
Natl. Acad. Sci. USA 2018, 115, 13129–13134. [CrossRef] 

30. Ekström, S.R.; Borg, E. Hearing speech in music. Noise Health 2011, 13, 277–285. [CrossRef] 
31. Eskridge, E.; Galvin, J., III; Aronoff, J.; Li, T.; Fu, Q.J. Speech Perception with Music MAskers by Cochlear Implant Users and 

Normal Hearing Listeners. J. Speech Lang. Hear. Res. 2012, 55, 800–810. [CrossRef] 
32. Crosse, M.J.; Di Liberto, G.M.; Bednar, A.; Lalor, E.C. The multivariate temporal response function (mTRF) toolbox: A MATLAB 

toolbox for relating neural signals to continuous stimuli. Front. Hum. Neurosci. 2016, 10, 604. [CrossRef] 
33. Forte, A.E.; Etard, O.; Reichenbach, T. The human auditory brainstem response to running speech reveals a subcortical mechanism 

for selective attention. eLife 2017, 6, e27203. [CrossRef] [PubMed] 
34. Lalor, E.C.; Power, A.J.; Reilly, R.B.; Foxe, J.J. Resolving precise temporal processing properties of the auditory system using 

continuous stimuli. J. Neurophysiol. 2009, 102, 349–359. [CrossRef] [PubMed] 
35. Ding, N.; Chatterjee, M.; Simon, J.Z. Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine 

structure. Neuroimage 2014, 88, 41–46. [CrossRef] [PubMed] 
36. Oldfield, R. The Assessment and Analysis of Handedness: The Edinburgh Inventory. Neuropsychologia 1971, 9, 97–113. [CrossRef] 
37. Ding, N.; Simon, J.Z. Neural coding of continuous speech in auditory cortex during monaural and dichotic listening. J. Neurophys-

iol. 2012, 107, 78–89. [CrossRef] 
38. Law, L.N.; Zentner, M. Assessing musical abilities objectively: Construction and validation of the profile of music perception 

skills. PLoS ONE 2012, 7, e52508. [CrossRef] 
39. Oostenveld, R.; Praamstra, P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin. Neurophysiol. 

2001, 112, 713–719. [CrossRef] 
40. Crosse, M.J.; Zuk, N.J.; Liberto, G.M.D.; Nidiffer, A.R.; Molholm, S.; Lalor, E.C. Linear Modeling of Neurophysiological Responses 

to Naturalistic Stimuli: Methodological Considerations for Applied Research. Front. Neurosci. 2021, 15, 705621. [CrossRef] 
41. Kulasingham, J.P.; Simon, J.Z. Algorithms for Estimating Time-Locked Neural Response Components in Cortical Processing of 

Continuous Speech. IEEE Trans. Biomed. Eng. 2022, 1–9. [CrossRef] 
42. Hillyard, S.A.; Hink, R.F.; Schwent, V.L.; Picton, T.W. Electrical signs of selective attention in the human brain. Science 1973, 182, 

177–180. [CrossRef] [PubMed] 
43. Näätänen, R.; Picton, T. The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the 

component structure. Psychophysiology 1987, 24, 375–425. [CrossRef] [PubMed] 
44. Picton, T.W.; Woods, D.L.; Proulx, G.B. Human auditory sustained potentials. I. The nature of the response. Electroencephalogr. 

Clin. Neurophysiol. 1978, 45, 186–197. [CrossRef] 
45. Muncke, J.; Kuruvila, I.; Hoppe, U. Prediction of Speech Intelligibility by Means of EEG Responses to Sentences in Noise. Front. 

Neurosci. 2022, 16, 876421. [CrossRef] [PubMed] 
46. Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. 

[CrossRef] 
47. Mankel, K.; Barber, J.; Bidelman, G.M. Auditory categorical processing for speech is modulated by inherent musical listening 

skills. NeuroReport 2020, 31, 162–166. [CrossRef] 
48. MacCallum, R.C.; Zhang, S.; Preacher, K.J.; Rucker, D. On the practice of dichotomization of quantitative variables. Psychol. 

Methods 2002, 7, 19–40. [CrossRef] 
49. Brouwer, S.; Akkermans, N.; Hendriks, L.; van Uden, H.; Wilms, V. “Lass frooby noo!” the interference of song lyrics and meaning 

on speech intelligibility. J. Exp. Psychol. Appl. 2022, 28, 576–588. [CrossRef] 
50. Kidd, G.; Colburn, H.S. Informational Masking in Speech Recognition. In The Auditory System at the Cocktail Party; Middlebrooks, 

J.C., Simon, J.Z., Popper, A.N., Fay, R.R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 75–109. 
51. Scharenborg, O.; Larson, M. Investigating the Effect of Music and Lyrics on Spoken-Word Recognition. arXiv 2018, 

arXiv:1803.05058. 
52. Lavie, N.; Hirst, A.; De Fockert, J.W.; Viding, E. Load theory of selective attention and cognitive control. J. Exp. Psychol. Gen. 2004, 

133, 339–354. [CrossRef] 
53. Dong, Y.; Zheng, H.-Y.; Wu, S.X.-Y.; Huang, F.-Y.; Peng, S.-N.; Sun, S.Y.-K.; Zeng, H. The effect of Chinese pop background music 

on Chinese poetry reading comprehension. Psychol. Music 2022, 50, 1–22. [CrossRef] 
54. Bidelman, G.M.; Howell, M. Functional changes in inter- and intra-hemispheric auditory cortical processing underlying degraded 

speech perception. Neuroimage 2016, 124, 581–590. [CrossRef] [PubMed] 
55. Key, A.P.F.; Dove, G.O.; Maguire, M.J. Linking brainwaves to the brain: An ERP primer. Dev. Neuropsychol. 2005, 27, 183–215. 

[CrossRef] [PubMed] 
56. Ding, N.; Simon, J.Z. Emergence of neural encoding of auditory objects while listening to competing speakers. Proc. Natl. Acad. 

Sci. USA 2012, 109, 11854–11859. [CrossRef] [PubMed] 
57. Strauss, D.J.; Corona-Strauss, F.I.; Trenado, C.; Bernarding, C.; Reith, W.; Latzel, M.; Froehlich, M. Electrophysiological correlates 

of listening effort: Neurodynamical modeling and measurement. Cogn. Neurodyn. 2010, 4, 119–131. [CrossRef] 
58. Bidelman, G.M.; Lowther, J.E.; Tak, S.H.; Alain, C. Mild cognitive impairment is characterized by deficient hierarchical speech 

coding between auditory brainstem and cortex. J. Neurosci. 2017, 37, 3610–3620. [CrossRef] 

http://doi.org/10.1073/pnas.1811793115
http://doi.org/10.4103/1463-1741.82960
http://doi.org/10.1044/1092-4388(2011/11-0124)
http://doi.org/10.3389/fnhum.2016.00604
http://doi.org/10.7554/eLife.27203
http://www.ncbi.nlm.nih.gov/pubmed/28992445
http://doi.org/10.1152/jn.90896.2008
http://www.ncbi.nlm.nih.gov/pubmed/19439675
http://doi.org/10.1016/j.neuroimage.2013.10.054
http://www.ncbi.nlm.nih.gov/pubmed/24188816
http://doi.org/10.1016/0028-3932(71)90067-4
http://doi.org/10.1152/jn.00297.2011
http://doi.org/10.1371/journal.pone.0052508
http://doi.org/10.1016/S1388-2457(00)00527-7
http://doi.org/10.3389/fnins.2021.705621
http://doi.org/10.1109/TBME.2022.3185005
http://doi.org/10.1126/science.182.4108.177
http://www.ncbi.nlm.nih.gov/pubmed/4730062
http://doi.org/10.1111/j.1469-8986.1987.tb00311.x
http://www.ncbi.nlm.nih.gov/pubmed/3615753
http://doi.org/10.1016/0013-4694(78)90003-2
http://doi.org/10.3389/fnins.2022.876421
http://www.ncbi.nlm.nih.gov/pubmed/35720724
http://doi.org/10.18637/jss.v067.i01
http://doi.org/10.1097/WNR.0000000000001369
http://doi.org/10.1037/1082-989X.7.1.19
http://doi.org/10.1037/xap0000368
http://doi.org/10.1037/0096-3445.133.3.339
http://doi.org/10.1177/03057356211062940
http://doi.org/10.1016/j.neuroimage.2015.09.020
http://www.ncbi.nlm.nih.gov/pubmed/26386346
http://doi.org/10.1207/s15326942dn2702_1
http://www.ncbi.nlm.nih.gov/pubmed/15753046
http://doi.org/10.1073/pnas.1205381109
http://www.ncbi.nlm.nih.gov/pubmed/22753470
http://doi.org/10.1007/s11571-010-9111-3
http://doi.org/10.1523/JNEUROSCI.3700-16.2017


Brain Sci. 2022, 12, 1320 13 of 13 

59. Hennessy, S.; Mack, W.J.; Habibi, A. Speech-in-noise perception in musicians and non-musicians: A multi-level meta-analysis. 
Hear. Res. 2022, 416, 108442. [CrossRef] 

60. Du, M.; Jiang, J.; Li, Z.; Man, D.; Jiang, C. The effects of background music on neural responses during reading comprehension. 
Sci. Rep. 2020, 10, 18651. [CrossRef] 

61. Román-Caballero, R.; Martín-Arévalo, E.; Lupiáñez, J. Attentional networks functioning and vigilance in expert musicians and 
non-musicians. Psychol. Res. 2021, 85, 1121–1135. [CrossRef] 

62. Bialystok, E.; DePape, A.M. Musical expertise, bilingualism, and executive functioning. J. Exp. Psychol. Hum. Percept. Perform. 
2009, 35, 565–574. [CrossRef] 

63. Weiss, M.W.; Trehub, S.E.; Schellenberg, E.G.; Habashi, P. Pupils Dilate for Vocal or Familiar Music. J. Exp. Psychol. Hum. Percept. 
Perform. 2016, 42, 1061–1065. [CrossRef] [PubMed] 

64. Swaminathan, J.; Mason, C.R.; Streeter, T.M.; Best, V.; Kidd, G., Jr.; Patel, A.D. Musical training, individual differences and the 
cocktail party problem. Sci. Rep. 2015, 5, 11628. [CrossRef] [PubMed] 

65. Bendixen, A. Predictability effects in auditory scene analysis: A review. Front. Neurosci. 2014, 8, 60. [CrossRef] [PubMed] 

http://doi.org/10.1016/j.heares.2022.108442
http://doi.org/10.1038/s41598-020-75623-3
http://doi.org/10.1007/s00426-020-01323-2
http://doi.org/10.1037/a0012735
http://doi.org/10.1037/xhp0000226
http://www.ncbi.nlm.nih.gov/pubmed/27123682
http://doi.org/10.1038/srep11628
http://www.ncbi.nlm.nih.gov/pubmed/26112910
http://doi.org/10.3389/fnins.2014.00060
http://www.ncbi.nlm.nih.gov/pubmed/24744695

	Introduction 
	Materials and Methods 
	Participants 
	Stimuli and Task 
	EEG Recording Procedures 
	Behavioral Data Analysis 
	Electrophysiological Data Analysis: Temporal Response Functions (TRFs) 
	Statistical Analyses 

	Results 
	Behavioral Data 
	Electrophysiological Data 
	Neural Speech Tracking as a Function of Listeners’ Musicality 
	Behavioral Data 
	Electrophysiological Results 


	Discussion 
	Conclusions 
	References



