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 Continuous monitoring of phase & energy of EEG signals to perform source location. 
 Methodology was found to be robust in locating short seizure instances (8-12 sec). 
 Algorithm achieved 93.3% precision and accuracy and 100% sensitivity. 

a b s t r a c t  

Objective: Localization of epileptic seizures, usually characterized by abnormal hypersynchronous wave 
patterns from the cortex, remains elusive. We present a novel, robust method for automatic localization 
of seizures on the scalp from clinical electroencephalogram (EEG) data. 
Methods: Seizure patient EEG data was decomposed via the Hilbert Transform and processed through the 
following methodology: sorting the analytic amplitude (AA) in the time instance, locating the maximum 
amplitude within the vector of channels, cross-correlating amplitude values in the time index with the 
channel vector. The channel with highest AA value in time was located. 
Results: Our approach provides an automated way to isolate the epi-genesis of seizure events with 93.3% 
precision and 100% sensitivity. The method differentiates seizure-related neural activity from other com-
mon EEG noise artifacts (e.g., blinks, myogenic noise). 
Conclusions: We evaluated performance characteristics of our source location methodology utilizing both 
phase and energy of EEG signals from patients who exhibited seizure events. Feasibility of the new algo-
rithm is demonstrated and confirmed. 
Significance: The proposed method contributes to high-performance scalp localization for seizure events 
that is more straightforward and less computationally intensive than other methods (e.g., inverse source 
modeling). Ultimately, it may aid clinicians in providing improved patient diagnosis. 

 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights 
reserved. 
1. Introduction 

Epileptic seizures are a dysfunction in the brain that are charac-
terized by simultaneous and periodic firing of large neural popula-
tions (Shoeb et al., 2004). Rapid localization of seizures is critical in 
medical environments to notifying medical staff and prevent fur-
ther patient complications. Automatic localization of seizure 
events from EEG signals has been examined in several previous 
studies using a variety of approaches including machine learning 
(Shoeb and Guttag, 2010), frequency transforms (Hartmann et al., 
2011), and nonlinear association analysis (Westmijse et al., 2009). 

Knowledge about the exact seizure onset zone (SOZ) is of 
utmost importance for planning surgical treatment of epilepsy 
(Boon and D’Have, 1995; Boon et al., 1997). This task can be accom-
plished using either invasive or non-invasive methods. The prob-
lem is finding the exact location of the source of the seizure from 
the projections of electrodes scattered on the scalp. Although inva-
sive methods (e.g., intracranial recordings) are generally more 
accurate and reliable because of the higher signal-to-noise ratio 
(SNR) of the signals, the higher risk of infection and the high cost 
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of performing the required operations necessitates the exploration 
of alternative methods like the scalp EEG. A comprehensive review 
of the available methods is presented in Michel et al. (2004). 
The two most common approaches to EEG source analysis are 
the parametric beamformer method and non-parametric LORETA 
method. 

The beamformer enables source localization by suppressing 
interfering activity of neighboring neural regions from the region 
of interest through spatial filtering. Source locations are found 
through dipole modelling, where the parameters used are location 
and orientation. A series of dipoles represents the spatial align-
ment across the brain. There are several types of beamformer 
methods (e.g., quiescent beamformer, linearly constrained mini-
mum variance (LCMV) beamformer, and eigenspace-based beam-
former). A mathematical computation of the LCMV is provided in 
Appendix A. Essentially, the LCMV beamformer applies a covari-
ance matrix in order to suppress any interference from neighboring 
sources. Isolating regions of interest while suppressing interfer-
ence from neighboring sources have also been utilized in other 
approaches. For example, bandpass filtering in the Fourier domain 
can isolate frequencies of interest within the EEG, while applying 
spatial low pass filters have been used to reduce interference from 
neighboring sources. 

A related solution is to estimate the intracranial current densi-
ties associated with the electric potentials generated by active cor-
tical pyramidal neurons. An example of source localization under 
this approach is the widely used low-resolution brain electromag-
netic tomography (LORETA) and improved standardized low-
resolution electromagnetic tomography (sLORETA) solutions 
(Pascual-Marqui et al., 2011; see Appendix A for details). sLORETA 
applies a statistical standardization of the current density values to 
scale cortical activity within a range of values. Groups of electrodes 
exhibiting similar cortical activity are clustered and displayed 
within a range of standardized values instead of a single source 
location. Despite their utility in estimating interictal spikes associ-
ated with SOZ foci (Song et al., 2015; Duez et al., 2019), a major 
limitation of both the LCMV and sLORETA approaches are that they 
(i) are computationally expensive and (ii) represent inverse esti-
mates with non-unique solutions (i.e., source locations cannot be 
definitively determined using scalp data). Moreover, gradations 
in intensity from specific sources are difficult to view under these 
approaches because inverse methods only provide broad clusters 
of neural activity. 

Here, we focus on monitoring both phase and energy of EEG sig-
nals in order to perform seizure localization. This method also has 
the potential to pin-point seizure occurrences on the cortex by the 
projected power of EEG signals and assuming a single source of 
power at a given instance in time. Existing methods of seizure loca-
tion rely on the raw EEG analysis from an experienced clinician. 
Moreover, a robust automatic seizure location method should be 
sensitive, i.e., have high accuracy in locating all clinically locatable 
seizures and be reliable, i.e., have low false errors and not erro-
neously label non-seizure events (e.g., common EEG artefacts like 
eye-blinks, movements, etc.) as seizure occurrences. Thus, we com-
pared our approach in its ability to distinguish true seizure events 
from other common artifacts of the EEG. 

Our approach promotes the concept of quantitative EEG analy-
sis (qEEG) to provide automated location based on neural markers. 
Spatial-temporal activity can be viewed as seizure activity produc-
ing an epicenter at the height of neural activity, as well as width 
varying gradations from the epicenter. The proposed method 
focuses on focal seizures that exhibit ~ 3 Hz activity and exhibit 
5–10 times greater increase in amplitude from basal neural activ-
ity. Our method exploits the continuous analytic amplitude and 
phase information across EEG channels to robustly localize seizure 
foci on the scalp. 
2. Methods 

2.1. EEG data and preprocessing 

This study used an existing, de-identified patient EEG database 
provided by the last author (J.W.W.), a board-certified pediatric 
neurologist specializing in epilepsy and its treatment, and Chief 
of Pediatric Neurology University of Tennessee Health Science Cen-
ter (UTHSC). Original data collection protocols were approved by 
the UTHSC IRB (Protocol# 13-02783-XM). Raw EEGs were collected 
on an Electrical Geodesics Inc. (EGI) high-density EEG system. The 
dataset consisted of EEGs from N = 15 patients (6 females, 9 males), 
who were, on average, ~20 years old. Patients in the sample were 
being treated at UTHSC for medically intractable epilepsy charac-
terized by focal seizures consisting of abnormal hypersynchronous 
wave patterns. 

EEG recordings included normal and abnormal (seizure) brain 
activity monitored for 60–90 minutes during examination, 
recorded at 128-channels according to the 10–20 system. Data 
were average referenced and sampled at 1000 Hz. Preprocessing 
included notch filtering to remove 60 Hz line noise and artifact 
removal whereby segments contaminated by myogenic noise and 
blinks (±50 lV) were automatically discarded using the algorithm 
described in the manuscript. Preprocessing was conducted using 
custom routines coded in MATLAB. In some instances, patient EEGs 
did not contain any seizure occurrences. This made it possible to 
first detect, and when present, locate seizure instances across 
channels. Confirmation of seizure location was provided by clini-
cian judgments of J.W.W.’s neurology group. 

Epileptic seizure occurrences were projected as synchronized 
oscillations with a specific frequency that was visible within a wide 
range of EEG channels. Fig. 1 shows a sample of how this type of 
seizure was observed in raw EEG data. 

In order to find the most effective frequency band characteriz-
ing seizure episodes, we first calculated the Fast Fourier Transform 
(FFT) of the EEG signals within the time limit of a sample seizure 
occurrence. FFTs showed peak power at ~3 Hz and additional har-
monic energy extending up to 11 Hz. We then determined the 
dominant frequency of seizure oscillations across all patients, 
which was between 2.7 to 2.9 Hz. Consequently, we band-pass fil-
tered data to include this nominal frequency range that described 
seizure activity (1–15 Hz; transition bandwidth = 1 Hz; N = 370). 
Peak-to-peak pass-band ripple was < 0.02 dB, which guaranteed 
signal distortion of < 2%. A ± 2% gain (0–20 Hz) and ± 2% distortion 
was achieved within the passband. Filtering was implemented in 
the EEGLAB MATLAB toolbox (http://sccn.ucsd.edu/eeglab/) 
(Delorme and Makeig, 2004) using the Parks-McClellan optimal 
finite impulse response (FIR) filter design method (McClellan and 
Parks, 1973). 

2.2. Analytical amplitude method 

Our seizure localization routines followed three main steps: (1) 
Hilbert Transform, (2) calculating the analytic amplitude and phase 
differences per channel, and (3) comparing these metrics across 
time/channels to determine the most likely seizure epicenter. 

The proposed method first employed the Hilbert Transform to 
calculate the power and phase of the EEG signals. The Hilbert 
transform is defined as (Eq. (1)): 

Hðuj tð ÞÞ  ¼  
1 
p PV 

Z þ1 

1 

Vjðt 0 Þ 
ðt  t 0 Þ dt 

0 ð1Þ 

where PV signifies the Cauchy Principal Value. The Hilbert trans-
form is a linear operator like the FFT and is particularly appropriate 
for analyzing non-stationary signals by expressing frequency as a 
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Fig. 1. An example of a seizure EEG waveform. 
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rate of change in phase. Calculating the Hilbert on all EEG signals 
yielded the analytical signals of each channel. The vector length at 
each digitizing step, t is the state variable for analytic amplitude. 
For each channel j, denoted as vj t ð Þ from the recorded EEG, the ana-
lytical signal,Vj t ð Þ is a time series which consists of a real part, vj t ð Þ
and an imaginary part uj t ð Þwhich together form the complex num-
ber:VjðtÞ ¼ v jðtÞ þ iujðtÞ. The real part of the Hilbert transform is 
decomposed from the EEG signal to reflect the spatial ensemble 
average of the amplitude activity, vj t ð Þ, representing excitatory neu-
rons, v t ð Þ (Freeman, 2004). The Hilbert transform provides the 
imaginary part,uj t ð Þ of the signal representing an estimate of the 
output of the activity of inhibitory neurons (Freeman, 2004). The 
sum of squares of the real and imaginary parts of the signal pro-
duces the instantaneous power required by the excitatory and inhi-
bitory neurons in local areas of the cortex from dendritic currents 
(Freeman, 2004). The analytic amplitude is calculated through the 
square root of that sum of values. 

From the Hilbert output, we then calculated the time-varying 
Analytical Amplitude [Aj t ð Þ] and Phase signals [PjðtÞ) of the EEG 
for each channel j during the time period of seizure using Eqs. 
(2) and (3). 

AjðtÞ ¼  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
v2 

j ðtÞ þ u2 
j ðtÞ

q 
ð2Þ 

The square root of the sum of the squares from the real and 
imaginary parts of the signal produces the Analytical Amplitude 
Aj tð Þ: 

PjðtÞ ¼ tan1 ð ujðtÞ 
v jðtÞ Þ ð3Þ 

The arctangent of the real and imaginary parts of the signal pro-
duce the Analytical Phase Pj t ð Þ: 

The phase difference at every instant was then computed by dif-
ferentiating the consecutive phase values at every sample (Eq. (4)). 

DPjðtÞ ¼ PjðtÞ  Pjðt 1Þ ð4Þ 
We could not rely solely on the instantaneous values of Analyt-

ical Amplitude and Phase to locate the occurrence of seizures, due 
to spurious noise, movement and artefacts that may produce false-
positives. Thus, a weighted summation function of the Analytical 
Amplitude and Phase Differences within a fixed time window acted 
as a memory function to predict if the specific period of data was 
representative of a seizure occurrence. Two indices were intro-
duced to quantify the resemblance of signal to the seizure. The first 
index operates on the Analytical Amplitude (SAAj) and the second 
on the Analytical Phase Difference (SAPj): 

SAAjðtÞ ¼  
P M 

k¼0 
ekkAjðt  kÞ 

SAPjðtÞ ¼  
P M 

k¼0 
ekkDPjðt  kÞ 

ð5Þ 

where k is the forgetting factor, M is the length of the window and 
their values determine the degree in which past data would affect 
the indices. The received signal t is subtracted from the transmitted 
signal k. These values were selected to filter out the transient effect 
of common artefacts on the analytical amplitude and phase signals 
that would typically last for several seconds. The weighted summa-
tion function was based on the recursive least-squares algorithm 
with an adaptive forgetting factor for optimal filtering. If the forget-
ting factor k is large, the function has a long time series length to 
reduce the effects of spurious noise; if the forgetting factor k is 
small then the function is adapted to the channel dynamics and 
can identify artefacts such as seizure instances (Zhuang, 1998). 
The weighted summation function is applied to the Analytical 
Amplitude [Aj] and Phase Differences [DPj]). Values of both indices 
were then compared to data driven patient specific thresholds to 
locate the seizure occurrences. 

Because differences between seizure occurrences exist across 
patients, a fixed threshold could not be used for all individuals. 
We used the following formulation to scale individual threshold 
values: 

SAthreshold ¼ X  SDpatient 

SPthreshold ¼ Y 
ð6Þ 

The values of coefficients (X, Y) were chosen experimentally by 
analyzing and comparing the patterns of changes for different 
occurrences of seizures and artefacts and selecting the most appro-
priate value. In order to compensate for cross-patient differences in 
signal amplitudes, we measured the standard deviation of a period 
of EEG data for each subject (SDpatient) and used that value to scale 
the thresholds for each patient. It should be noted that only the 
amplitude threshold (SAthreshold) was variable between patients. In 
addition, differences between the two coefficients were due to 
the fact that SPthreshold was being compared to the phase differences, 
which tended to be small as compared to amplitude values. The 
algorithm was set to recognize seizure occurrences only when both 
conditions were met for a region of interest (ROI) of EEG channels: 

SAAj > SAthreshold ð7Þ 

SAPj > SPthreshold 

The Analytical Amplitude (SAAj) and the Analytical Phase Differ-
ence (SAPj) values greater than the threshold would signify a vector 
of channels that exhibit synchronous, low frequency (~3Hz), and 
high amplitude behavior. 

2.3. Seizure localization 

Having located seizure occurrences within the time dimension 
(Fig. 2a), our next step was to find the most probable location of 
its occurrence. Assuming that a seizure is caused by a single source 
located on the cortex of the brain, we reasoned we could localize 
seizure activity by finding a constant value appearing through sev-
eral consecutive channels across a phase difference diagram (see 
Fig. 2c). Initially, we examined the analytic phase of all channels 
within a time sequence spanning the occurrence of a seizure event, 
and expected to see unified low frequency, high amplitude EEG 
energy during seizure states. We measured the corresponding 



Fig. 2. (a) Seizure activity from multiple channels, (b) analytic amplitude and (c) phase. 
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maximum analytical amplitude values within the period of seizure 
(see Fig. 2b). We used the analytical amplitude values from that 
instant to find the channel with the maximum value. 

Analytic amplitudes were then sorted in time and cross-
correlated to the channel vector which holds a row of analytic 
amplitudes per time segment. For all time segments, the maximum 
analytic amplitude was found, which was taken as the estimated 
epicenter of seizure intensity at that time instance. 

The following steps summarize our seizure localization routine: 

i. Select EEG data with seizure occurrences for processing 
ii. Apply Eqs. (2)–(7). 
iii. Sort AA values with time, in order to associate associating 

highest AA to a time instance. 
iv. Find max AA value among all channels 
v. Cross-correlate AA index value in channel vector/electrode 

value with time instance. 

The final output provided the location (channel) and time 
instance with highest AA value associated with seizure activity. 
3. Results 

3.1. Analytic amplitude and phase descriptions of seizure EEG 

When present, seizure activity was identified as a clear bound-
ary from low-amplitude, asynchronous activity to high-amplitude, 
rhythmic activity, where small changes in excitatory synaptic gain 
led to strong oscillatory activity. Among 128 electrodes, we found 
seizure activity were robust in Less or equal to 25 channels (~20% 
of electrodes). All 15 patients had focal seizures whose abnormal 
neural behavior was observable in their EEG. Fig. 2b shows how 
the analytic amplitude and phase difference (Fig. 2c) of the signal 
changed during the seizure period across all channels and time. 
Seizure oscillations manifested as an almost sinusoidal signal with 
a frequency of ~ 3 Hz and abnormal changes in power. Phase 
changes of the signal also became more organized, causing the 
phase difference diagram to transform from completely random 
changing values to small constant values that lingered for as long 
as the seizure event. The standard deviation across channels of 
the phase differences provided plateaus of low values punctuated 
by spikes of the analytic amplitude. 

Fig. 2a demonstrates the localized power of a seizure event 
across all electrodes at a single time instance. The phase of a signal 
that is approaching periodic behavior could be represented as con-
tinually increasing, and if there were two signals having the same 
sign, they would be reinforcing each other, whereas the phase dif-
ference between them would approach zero. We see the phase dif-
ferences approached zero in Fig. 2c during the seizure instance due 
to the semi-periodic behavior of the EEG during aberrant events. 
This instance is concentrated due to the phase differences of neigh-
boring semi-periodic behaving signals. 
3.2. Distinguishing seizure activity from EEG artifact 

Another important challenge was to distinguish between EEG 
artefacts and true seizure events. Our method could effectively rule 
out common artefacts like bad electrode contacts and muscle or 
eye movements because these artefacts are usually time limited, 
are aperiodic, and do not induce phase synchronization. Fig. 3 
depicts this difference projected on the calculated Analytical Phase 
Index from Eq. (5). Fig. 3a shows a typical artefact (i.e., voluntary 
head movement). Similarly, Fig. 3b demonstrates the analytic 
amplitude and Fig. 3c demonstrates the phase differences observed 
in artefact instances. The phase differences of seizure instances 
approach zero (depicted in blue in Fig. 2c) since neighboring elec-
trodes exhibit the same semi-periodic behavior as opposed to the 
phase differences of the artefacts which exhibit non-zero random 
values in Fig. 3c. 



Fig. 3. (a) Artefact activity from multiple channels, (b) analytic amplitude and (c) phase. 
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The Analytical Phase Index (Eq. (5)) shows a clear period of syn-
chronization for the seizure event across all channels, while an 
artefact exhibits a sudden change in the amplitude synchroniza-
tion observed briefly, and dissipates much faster than a seizure 
event. By choosing the appropriate threshold (Eq. (6)) we could 
successfully rule out the artefacts by the location method itself. 
This capability of our method removes the need for further prepro-
cessing for artefact removal which becomes an important limita-
tion when the algorithm is desired to work in real-time. 
Fig. 4. Visualization of the Analytical Amplitude changes within the time period of the
occurrence is found in in the Analytical Amplitude which concentrates into concentric c
Fig. 4 shows changes in the analytic amplitude of the signal dur-
ing the occurrence of seizures. The relative distance of the source 
from each channel is apparent. Fig. 4a illustrates changes through 
time of the peak of the seizure location temporally. A 2-
dimensional display of the analytic amplitude with time on the 
y-axis and channel/electrodes on the x-axis provides an overview 
of the intensity of the seizure as the higher amplitudes cluster 
around a group of channels. A magnified view shown in Fig. 4b 
demonstrates how peak seizure occurrence concentrates into con-
 seizure occurrence. (a) Complete time range, (b) zoomed view. The peak seizure 
ircles and then slowly dissipates over time. 



Table 2 
Results from the seizure localization – Beamformer. 
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centric circles and then slowly dissipates. Varying gradients of 
amplitude intensities can be seen in this magnified view. 
Patient Seizure Location TP/FP 

1 T9 TP 
2 F5 TP 
3 P5 TP 
4 FP 
5 FP 
6 FP 
7 Oz TP 
8 FT9, F10 TP 
9 FT8 TP 
10 C4 TP 
11 FP 
12 F8, T4 TP 
13 Fp2 TP 
14 F3 TP 
15 Fp1 TP 
3.3. Comparison of algorithm performance with other methods 

Our EEG data consisted of time instances of seizures and arte-
facts. The number of artefacts existing in the data and the percent-
age of false positive seizure detections were assessed to examine 
how robust our method is in deciphering seizure occurrences vs. 
artefacts. EEG datasets were separated into possible seizure events 
and processed through our methodology. Most patients exhibited 
frontal lobe seizure activity (9/15). In some instances, more than 
one seizure event was detected in their EEG time series. The aver-
age duration of seizures was 10.8 sec. Our blinded source location 
results were then confirmed against expert clinical judgements of 
Dr. Wheless’ group. 

We found the proposed algorithm achieved 93.3% precision and 
accuracy and 100% sensitivity in seizure detection. The specificity 
(true negative rate) was 0%, i.e., the algorithm produced no true 
negatives. Additionally, only 6% of EEG data resulted in false loca-
tions. Results from the localization analysis are summarized in 
Table 1. Chi Squared Goodness of Fit was performed to determine 
how empirically determined electrode locations compared to 
physician observed seizure locations. Calculated electrode loca-
tions showed excellent agreement with clinical judgements 
(X2 = 0.044, P = 1.000). Our seizure location algorithm could not 
precisely locate one of the seizure locations (Patient 6). The false 
positive the algorithm produced may be due to the cluster occur-
rences in multi-focal locations, such that seizure activity was found 
in a cluster (F1, F3, F5, FC1, FC3 and FC5) vs. an epicenter. 

As a further validation test, we compared our proposed algo-
rithm of seizure localization to the well-known beamformer 
approach (for details, see Appendix A). The eigenspace-based 
beamformer algorithm achieved 73.3% precision and accuracy 
and 100% sensitivity. Only 11/15 seizures were located. The speci-
ficity or true negative rate was 0% (i.e. the algorithm produced no 
true negatives). Additionally, only 27% of the EEG seizure data set 
resulted in false locations. Results from the localization analysis 
are summarized in Table 2. The empirically determined electrode 
foci agreed with clinical judgments (X2 = 1.298, P = 0.999). The 
false positive of the algorithm may again be due to cluster occur-
rences in multi-focal locations in some patients including Patient 
6, Patient 4 (left centroparietal), Patient 5 (right posterior tempo-
ral), and Patient 11 (POz, FT7, P4, Cz). 
Table 1 
Results from the seizure localization. 

Patient Gender Age Seizure Location TP/FP 

1 M 15 T9 TP 
2 F 21 F5 TP 
3 M 17 P5 TP 
4 M 22 CP1, FT10 TP 
5 M 20 P8 TP 
6 M 20 FP 
7 F 15 Oz TP 
8 F 14 FT9, F10 TP 
9 F 38 FT8 TP 
10 F 19 C4 TP 
11 F 21 POz, FT7, P4, Cz TP 
12 M 15 F8, T4 TP 
13 M 17 Fp2 TP 
14 M 21 F3 TP 
15 M 20 Fp1 TP 

*TP (true positive) and FP (false positive), M (male), F (female). 
3.4. Epicenter localization 

A 3D visualization of the topography of analytical amplitude 
across the scalp is shown in Fig. 5. Maximum analytic amplitude 
was taken as the epicenter of seizure intensity at a time instance. 
As seen in the representative patient in Fig. 5, localized seizure 
instances are observed with varying degrees of lesser intensities 
over the scalp. Results show that channel 22 (Fp1) is the source 
of the highest seizure activity, with neighboring channels 21 and 
26. Neighboring electrodes exhibit varying gradations of color 
intensity, highlighting the focal point of seizure activity (dark 
red), and varying levels of lower intensities around the focal point. 
4. Discussion 

We present a new approach to localizing seizure-related neural 
activity from EEG recordings based on analysis of analytic ampli-
tude and phase differences over time and across channels. Results 
revealed localized epicenters of low frequency, high energy neural 
activity. Our method was robust in locating relatively short seizure 
instances (8–12 seconds) and achieved 93.3% precision and accu-
racy and 100% sensitivity in detecting true seizure activity from 
ongoing EEG and common artifacts. 

EEG data showed that seizure activity was largely restricted to a 
bandwidth of periodic activity at ~3 Hz. Internally modulated neu-
ral activity is maintained through the self-organization amongst 
excitatory cortical neurons and inhibitory neurons (Freeman, 
1975; 2004). When mutual inhibition exceeds that of mutual exci-
tation, an oscillation repeats a complex pattern about every 0.3 s 
(Freeman 1972). Freeman has found through electrical stimulation 
of the lateral olfactory tract (LOT) in the prepyriform cortex (PC) of 
the cat, rat and rabbit models that seizures are induced that exhibit 
dominant localized oscillatory behavior (Freeman 1962, 1972). 
Biologically based models have been developed to capture the 
dynamics of localized seizure behavior and explain the dynamics 
of local and global neural networks (Freeman 1972, Kozma and 
Freeman 2001, Myers and Kozma, 2018). Dominant delta neural 
activity (~3 Hz) has been exhibited in which some inhibitory neu-
rons become more disinhibited (excited) and others more inhibited 
(less active) (Freeman, 1986). If inhibitory neurons gain in inten-
sity, thereby inhibiting their neighbors, excited regenerative feed-
back produces an explosive discharge. This result in an inhibitory 
post-synaptic potential in the excitatory neurons to which they 
are projected (Freeman et al. 2006). Seizure instances are sustained 
losses of mutual competitive activity that can manifest into explo-
sive growth of local activity (Freeman et al. 2006). 



Fig. 5. Map of localization results using the Analytical Amplitude of EEG signals (Patient 15). 
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Our technique reveals that localized neural behavior can be cap-
tured through signal decomposition (Hilbert amplitude and phase). 
The Hilbert transform provides temporal resolution of the near-
instantaneous amplitude and phase (Freeman, 2004) and differen-
tiated localized electrode intensities with the appropriate choice of 
band pass filter to isolate seizure activity. The inverse relationship 
demonstrated in Fig. 2 of the phase differences and analytic ampli-
tude confirms previous studies using the Hilbert and Fourier tech-
niques (Freeman, 2006). 

Another important property of our approach is that it cleanly 
differentiated aberrant neural activity of interest (seizure events) 
from common EEG artifacts. Our algorithm performed with 93.3% 
precision and accuracy and 100% sensitivity in segregating true sei-
zure events. When random movements are produced that con-
tribute to artefacts, phase differences produce non-zero random 
values (Fig. 3) and there is little coherence across neural neighbor-
ing areas. Compared to seizure events, we found that phase differ-
ences can distinguish seizure instances that are relatively short 
term due to the high coherence of neural activity among neighbor-
ing electrodes. The high-temporal resolution of our approach 
resolves the semi-periodic behavior of seizure instances, as brief 
as several seconds. 

The epicenter of seizure activity is also highlighted through 
implementation of our novel algorithm. As neural activity transi-
tions to seizure behavior, neural spiking activity increases across 
spatial and temporal instances. These events may also involve elec-
tromyographic activity (e.g., appendage and face movement) that 
can confound EEG recordings. In this regard, implementing a 
weighted summation function [Eq. (5)] helped eliminate true neg-
atives and reduced artefact occurrences. The analytic phase and 
amplitude approach compared favorably to the beamformer 
methodology in terms of artefact and noise suppression. Seizure 
thresholds were applied (Eqs. (6) and (7)) in order to distinguish 
seizure activity from background neural activity. The temporal 
changes of the epicenter of the seizure intensity are also visible 
using our method (Figs. 4 and 5). Our approach shows that maxi-
mum analytic amplitude can be used to determine the epicenter 
of seizure intensity on the scalp. Still, the effects of high-
amplitude seizure instances are both localized and have gradient 
effects that are far reaching across the head (Fig. 5). As an analogy, 
similar effects would be expected during earthquake events near 
the epicenter. 

Other source localization methods have been proposed in the 
literature (see Appendix A) and have been used to localize seizure 
activity with variable success. The eigenspace-based beamformer, 
for example, is superior to both the quiescent and the LCMV beam-
former, as it combines a low white noise gain with a high suppres-
sion of the interfering source. However, the quiescent beamformer 
does not succeed in suppressing interfering 15 Hz source activity 
(Muthuraman et al., 2014). The eigenspace-based beamformer 
strongly suppresses interfering sources, yet it still maintains a 
low white noise gain. Additionally, the output signal of the eigen-
space beamformer has slightly lower amplitude than the original 
source activity (Muthuraman et al., 2014). Similarly, LORETA 
source estimate errors can be measured by taking the distance 
between the location of the absolute maximum value (|zi | or |[J]i 
|) and the actual location of the test source (Pascual-Marqui 
et al., 2011). The related sLORETA algorithm shows zero localiza-
tion error under ideal (no-noise) conditions as compared to the 
LORETA method (Pascual-Marqui, 2002; 2011). Still, a major limi-
tation of both the LCMV and LORETA approaches are that they 
are computationally expensive and represent inverse estimates 
with non-unique solutions (i.e., source locations cannot be defini-
tively determined using scalp data). Our ‘‘analytic signal” method 
performs well under ‘ideal’ and realistic noise conditions, consider-
ing that it was tested in noisy, biologically-based systems (i.e., real 
patients). Yet, our approach maintains a high precision, accuracy, 
and sensitivity rate while robustly localizing seizure activity at 
the scalp—which does not require the assumptions assumed by 
the aforementioned inverse source methods. 
5. Conclusions 

We developed a novel method to localize seizure-related activ-
ity using scalp EEG based on the Hilbert Transform and analytic 
amplitude/phase of neural signals. Empirical analysis on clinical 
seizure EEG data showed the proposed method is effective for fast 
and reliable localization of seizure activity. The method is applica-
ble to seizures located in the cortex vs. seizure occurrences due to 
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substructures within the brain where EEG and MRI techniques 
have been utilized. The algorithm achieved high precision, accu-
racy and sensitivity rates of localization due to optimal filtering 
and the introduction of a weighted summation function that 
reduced extraneous artefacts from the signal. The method was 
found to be robust in locating relatively short seizure instances 
(8–12 seconds), usually considered as intractable types of seizures 
where surgery and medication cannot be utilized. Our method may 
offer a new approach to aid clinicians in localization of seizure 
activfity. Future studies are needed to determine the utility of 
the method to offer seizure diagnostics in real-time. 
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Appendix A 

A.1. Linearly constrained minimum variance (LCMV) beamformer 

Van Hoey et al. (1999) discusses the forward problem in the cal-
culation of potentials measured at the scalp electrodes caused by a 
known electrical dipole source within the head. The following 
equation determines the potential distribution of the scalp m elec-
trodes and their respective dipoles and its components, with c 2 
Rmx1: 

c ¼ L rdð Þ  d ðA1Þ 
The parameters of the dipole are its coordinates in rd and its 

dipole components in d (Van Hoey et al., 1999). The lead field 
matrix, L is determined by dipole position, electrode positions, 
and head geometry. A beamformer with the smallest additive 
white noise gain is called the quiescent beamformer (Van Hoey 
et al., 1999). 

wQc cT c 
 1 ðA2Þ 

The linearly constrained minimum variance (LCMV) beam-
former, is more sensitive to white noise than the quiescent beam-
former. The (LCMV) beamformer requires the weight vector to 
minimize the output power (Van Hoey et al., 1999): 

min 
w 

wTRvw s  : t : wTc ¼ 1 ðA3Þ 

The (LCMV) beamformer: 

wLCMV ¼ R1 
v c cTR1 

v c 
 1 

ðA4Þ 

where the matrix Rv will be calculated from the measurement of the 
EEG during the time interval: 

Rv ¼ 
1 
n 
VTV ðA5Þ 

where V 2 Rmxn ; and the EEG signal is measured at m electrodes
during n time samples by the matrix (Van Hoey et al., 1999). The 
covariance matrix Rv enables the determination of the weights in 
w while suppressing any interference from neighboring sources. 
In this manner, the LCMV beamformer can reduce the interference 
from the contribution of the local potential distributions from the 
area of interest. 

The eigenspace-based beamformer divides the m-dimensional 
measurement space into signal space and a noise space, based on 
V (Van Hoey et al., 1999). 

V ¼ PT SQ ; PRmxm; QRnxn; ðA6Þ 
The diagonal matrix S contains the number of dipolar sources 
which should be equal to the noise variance. The corresponding 
columns P are a set of basis vectors that span the signal space 
and Q are a set of basis vectors that span time (Van Hoey et al., 
1999). 

A.2. LORETA and sLORETA 

The low-resolution brain electromagnetic tomography (LOR-
ETA) solution uses a non-weighted minimum norm solution 
(Pascual-Marqui et al., 2011): 

J ¼ KT KKT þ aH 
 þ

u: ðA7Þ 

where K = HKc, given the lead field Kc, and matrix H which is known 
in statistics as the centering matrix. The superscript ‘+’ denotes the 
Moore–Penrose pseudoinverse (Rao and Mitra, 1973) where a  0 is  
known as the Tikhonov regularization parameter (Tikhonov et al., 
1995). The term, ‘u’ comes from u = Huc, where u 2 RN

E 
1 denotes 

the potentials at NE scalp electrodes. 
An improved approach known as standardized low-resolution 

electromagnetic tomography (sLORETA) involves a post-
processing statistical standardization of the current density values 
(Pascual-Marqui, 2002; 2011): 

zi ¼ 
½J i 

½S J  1=2 ii 

ðA8Þ 

where [J]i is the estimated current density at the ith voxel; 
sJ 2 RNv Nv is the covariance matrix for the current density at NV 

cortical voxels; and [sJ]ii is its ith diagonal element corresponding 
to the variance at the ith voxel (Pascual-Marqui et al., 2011). 
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