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Objectives: Providing cochlear implant (CI) patients the optimal signal 
processing settings during mapping sessions is critical for facilitating 
their speech perception. Here, we aimed to evaluate whether auditory 
cortical event-related potentials (ERPs) could be used to objectively 
determine optimal CI parameters. 

Design: While recording neuroelectric potentials, we presented a set of 
acoustically vocoded consonants (aKa, aSHa, and aNa) to normal-hear-
ing listeners (n = 12) that simulated speech tokens processed through 
four different combinations of CI stimulation rate and number of spec-
tral maxima. Parameter settings were selected to feature relatively fast/ 
slow stimulation rates and high/low number of maxima; 1800 pps/20 
maxima, 1800/8, 500/20 and 500/8. 

Results: Speech identification and reaction times did not differ with 
changes in either the number of maxima or stimulation rate indicating 
ceiling behavioral performance. Similarly, we found that conventional 
univariate analysis (analysis of variance) of N1 and P2 amplitude/latency 
failed to reveal strong modulations across CI-processed speech condi-
tions. In contrast, multivariate discriminant analysis based on a combina-
tion of neural measures was used to create “neural confusion matrices” 
and identified a unique parameter set (1800/8) that maximally differenti-
ated speech tokens at the neural level. This finding was corroborated by 
information transfer analysis which confirmed these settings optimally 
transmitted information in listeners’ neural and perceptual responses. 

Conclusions: Translated to actual implant patients, our findings suggest 
that scalp-recorded ERPs might be useful in determining optimal signal 
processing settings from among a closed set of parameter options and 
aid in the objective fitting of CI devices. 

Key words: Auditory evoked potentials, Cochlear implants, EEG classifi-
cation, Information transfer, Speech confusion matrix, Vocoded speech. 

(Ear & Hearing 2016;38;e215–e226) 

INTRODUCTION 

For the past 30 years, cochlear implants (CIs) have served as 
an effective means to provide access to sound for people with 
severe to profound hearing loss. However, music appreciation, 
fine speech perception, and noise-degraded listening still remain 
unresolved (Cullington & Zeng 2011). In terms of signal process-
ing, a CI device decodes input acoustic signals and converts them 
into biphasic electrical pulses to directly stimulate auditory nerve 

fibers. This neuronal stimulation can be changed by manipulating 
the signal processing strategies (i.e., parameter settings) of the CI 
processor to yield measurable changes in speech perception. Var-
ious CI mapping parameters are available to the clinical audiolo-
gist for adjustment during device fitting. Thus, it is important to 
understand which parameters and how specific combinations of 
device settings affect auditory perception and address the afore-
mentioned issues experienced by CI patients. Current approaches 
to CI fitting rely on the behavioral (subjective) evaluation of the 
patient. The present study aimed to demonstrate initial efficacy of 
a new, more objective approach to CI parameter selection based 
on listeners’ neurophysiological responses. 

Several studies have attempted to identify optimal parameter 
settings that maximize speech perception outcomes in CI patients 
(Fishman et al. 1997; Loizou et al. 2000; Kiefer et al. 2001; Fri-
esen 2005; Nie et al. 2006; Arora et al. 2009; Buechner et al. 2009; 
Shannon et al. 2011). Among contemporary CI speech process-
ing strategies, the n-of-m strategy (e.g., Spectral Peak [SPEAK], 
Advanced Combination Encoder [ACE]) has proven to be highly 
effective (Skinner et al. 2002). ACE is currently used as a default 
in Cochlear Corporation’s Nucleus system. In the n-of-m strategy, 
the device activates only a designated number of channels which 
have the highest spectral energy in each cycle of stimulation. This 
functional reduction in channels is beneficial to achieve faster 
stimulation rates (SRs), a reduction in channel interaction, and an 
increase in battery life. Maxima is a term used in the n-of-m speech 
coding strategy that indicates the number of activated channels (n) 
among those available (m) along an electrode array. Hence, the 
number of channels involved (maxima) determines the amount of 
spectral information for decoding the input speech signal. Studies 
have found that while the optimal number of maxima varies across 
individuals, at least eight maxima are typically required for robust 
speech perception (Dorman et al. 2002; Plant et al. 2002). 

Another relevant parameter to consider in CI processing is SR. 
CIs deliver acoustic information with a train of electrical biphasic 
pulses through multiple electrodes. SR determines the stimula-
tion rate (pps) that temporal information is transmitted to individ-
ual electrode contacts. SR limits how precisely temporal acoustic 
information like envelope cues are transferred to the auditory 
nervous system and are ultimately available to perception. Theo-
retically, rapid SRs might be advantageous as they (1) simulate 
the normal stochastic firing of the auditory nerve, (2) improve 
temporal sampling and fine structure coding, and (3) expand the 
dynamic range of both frequency and intensity, providing access 
to higher pitch percepts and lower thresholds (Shannon et al. 
2011). However, some studies have shown that higher SRs may 
not always improve speech recognition (Vandali et al. 2000; Fri-
esen et al. 2005; Arora et al. 2009; Shannon et al. 2011). Equivo-
cal effects of SR may stem from variations in signal processing 
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strategies, electrode interactions, or a negative influence of addi-
tional temporal information at higher rates (Nie et al. 2006; Shan-
non et al. 2011). What is clear, however, is that more research is 
needed to understand the conditions under which SR produces 
improvements in speech perception. Moreover, it would be useful 
to develop objective techniques to determine such parameters and 
map implants using a “hands off ” approach. 

Event-related brain potentials (ERPs) are a well-established 
objective measure of cortical auditory processing. ERPs have been 
used to assess the neurophysiological detection and discrimina-
tion of sound in normal and hearing-impaired listeners (Tremblay 
et al. 2003; Alain et al. 2014; Bidelman et al. 2014a). The corti-
cal ERPs consist of several prominent deflections (i.e., “waves”) 
that develop over the first few hundred milliseconds after sound 
initiation. In particular, the P1–N1–P2 complex is composed of 
three major waves occurring at latencies of ~50 msec (P1), ~100 
msec (N1), and ~180 to 200 msec (P2) after stimulus onset. They 
are presumed to originate from thalamus, primary, and secondary 
auditory cortex (Näätänen & Picton 1987; Picton et al. 1999) and 
thus, provide a neural index of early auditory coding in cerebral 
structures. To date, the utility of the obligatory P1–N1–P2 compo-
nents for deployment in clinical applications has not been firmly 
established. Intersubject variability and normal maturational 
changes notwithstanding (Novak et al. 1989; Luck 2005), the cor-
tical ERPs are remarkably stable and show clinically-acceptable 
(r > 0.8; Cicchetti 1994) test–retest repeatability across multiple 
sessions (Sandman & Patterson). This suggests that ERPs could 
be used in the objective assessment of auditory function and opti-
mization of hearing assistive devices (Billings et al. 2011b). 

Several studies have explored use of the P1–N1–P2 in assess-
ing auditory physiological function in CI patients. For example, 
P1 has been used as an index of the maturational changes in audi-
tory cortex following implantation (Sharma et al. 2002, 2005; 
Sharma & Campbell 2011). Following the technical challenge   
to minimize electromagnetic artifacts from CIs, (Gilley et al. 
2006; Martin 2007), studies have been able to assess how implant 
parameters influence the neural encoding of complex stimuli 
(Firszt et al. 2002; Kim et al. 2009), the recovery function of neu-
ral responses (Zhang et al. 2009, 2010), and the neural correlates 
of speech perception in CI patients (Groenen et al. 2001; Gordon 
et al. 2005; Kelly et al. 2005; Samira et al. 2010). For example, 
Kelly et al. (2005) measured N1 and P2 responses from 12 CI 
users by presenting three types of tonal stimuli (0.25, 1, and 4kHz 
pure tones). They reported that N1 amplitudes were smaller in the 
CI group than a control group. They further indicated that earlier 
P2 latencies were associated with shorter duration of deafness 
and greater speech perception performance. Similarly, Groenen 
et al. (2001) described characteristics of the N1–P2 response in 
9 post lingual CI patients using an extensive range of acoustic 
stimuli including tones, consonants, and vowel pairs. Their find-
ings showed that N1 and P2 latencies were prolonged in the CI 
group compared with control listeners. In addition, amplitudes 
of the N1 and P2 waves in response to consonant tokens were 
weaker in CI users compared with normal-hearing controls. Col-
lectively, these studies indicate that the cortical ERPs can be used 
to objectively assess aspects of auditory function in CI patients 
and, more critically, are predictive of behavioral outcomes. 

To date, few studies have explored the potential of using cortical 
ERPs (P1–N1–P2) to optimize the selection of CI device settings. 
One study by Friesen et al. (2009) found a potential use of ERPs 
for CI mapping. Using consonant–vowel–consonant syllables 

processed with a CI simulation (acoustic) vocoder, they observed 
a decrease in peak latencies and an increase in amplitudes with 
increasing number of channels from 2 to 16, indicative of improved 
speech encoding. Systematic changes in the ERPs with channel 
number implies that the characteristics of CI processing are repre-
sented in neural responses from auditory cortex. However, changes 
in P1–N1–P2 responses did not correlate with behavioral identi-
fication scores. Problematically, this suggests that while evoked 
potentials might be used to evaluate the neural encoding of CI 
speech, isolated waves may not provide a direct predictor of behav-
ioral outcomes. Finding new ways to leverage the ERPs in select-
ing processor settings is needed to provide an objective alternative 
to CI fittings. Such objective fitting techniques are particularly 
warranted in cases where patients cannot provide a confirmatory 
behavioral response (e.g., young infants, difficult-to-test patients) 
to validate the settings chosen by the clinician. 

In the present study, we extend previous ERP studies (Fri-
esen et al. 2009) to examine the effects of parametrically vary-
ing CI processor settings on the neural encoding of speech. Our 
specific aim was to determine whether or not listeners’ cortical 
ERPs could be used to identify an optimal combination of two 
important CI settings: SR and number of spectral maxima. To 
avoid complications produced by the electromagnetic artifact of 
CIs and demonstrate initial efficacy of the proposed technique, 
we recorded ERPs in response to acoustic simulations (vocoded 
speech) of various vowel–consonant–vowel (VCV) speech tokens 
in normal-hearing individuals. Simulated CI speech enabled us 
to more precisely control stimulation schemes while minimizing 
confounding factors inherent in actual CI patients (e.g., dura-
tion of device use, electrode insertion depth, etc.; Dorman et al. 
1997; Friesen et al. 2009; Casserly 2015). Listeners performed a 
speech identification task during electrophysiological recording 
to assess their behavioral performance for speech processed with 
different combinations of SR and maxima settings. 

We hypothesized that CI settings (SR/maxima combinations) 
yielding better behavioral speech identification would elicit cor-
tical responses with more robust amplitudes—consistent with 
prior studies (e.g., Friesen et al. 2009). In addition to typical 
univariate peak analyses, we adopted multivariate classification 
techniques that have been previously employed in recent ERP 
studies (Chang et al. 2010; Bidelman et al. 2013). The notion of 
this latter approach is that sounds that are perceptually identifi-
able are represented by unique patterns of neural activity; more 
divergent neural representations between tokens reflect different 
speech “templates” and thus support more robust identification 
(cf. Bidelman et al. 2013; Bidelman & Lee 2015). For this latter 
approach, we conducted a discriminant analysis (DA) to classify 
different neural responses to CI-processed speech into mutually 
exclusive groups. We then constructed “neural confusion matri-
ces” based on the accuracy we could predict the speech stimulus 
input from listeners’ ERP responses. Neural confusion matrices 
were then compared with perceptual confusion matrices to evalu-
ate which CI settings yielded superior behavioral identification 
of the stimulus set. Results show that multivariate analyses of the 
ERPs can be used to objectively determine CI processing settings 
from among a closed set of parameter combinations. 
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MATERIALS AND METHODS 

Subjects 
Twelve adults (4 males, 8 females) with self-reported normal 

hearing and no history of neurological or cognitive deficits par-
ticipated in the study. They were speakers of American English 
aged from 22 to 50 years old (M: 28.7, SD: 7.4 years). Hear-
ing was confirmed normal (<20 dB HL) in participants over 
30 years of age via formal audiometric evaluation. Participants 
completed a written consent form in compliance with a protocol 
approved by the Institutional Review Board at the University of 
Memphis. All were compensated monetarily for their time. 

Cochlear Implant Simulated Speech 
Twelve CI-simulated speech stimuli were created from three 

American English VCVs /aKa/, /aNa/, and /aSHa/ (Fig. 1A). The 
three original VCVs were taken from the consonant set created by 
Shannon et al. (1999). Speech tokens were produced by a female 
talker to minimize possible ceiling effects (Loizou et al. 1998), and 
preprocessed to normalize duration (400 msec) using the change 
tempo function in Audacity (v. 2.1.2). This function enables chang-
ing the tempo without changing the pitch for sounds. Sample rate 
(48,828 Hz), bit depth (16 bits), and RMS intensity normaliza-
tion were then completed using Praat (Boersma & Weenink 2013). 
The application “Cochlear Implant Simulation (v2.0) (CIS)” (de 
la Torre Vega et al. 2004) was then used to create four CI-vocoded 
simulations for each VCV that varied in two parameters: SR and 
the number of maxima (described below). 

As this study is motivated in part by clinical considerations, 
an attempt was made to create stimuli in CIS that were similar 
to those processed by the default ACE strategy in the Nucleus CI 
system: Input frequency range, defined as fMin and fMax, was set 
from 150 Hz to 8kHz. The spectral ranges of input sounds were 
separated into band-pass filters whose bandwidths were depen-
dent on the filter’s center frequency; filters with lower center fre-
quencies had narrower bandwidths than those with higher center 
frequencies. The number of filters was determined by the desig-
nated value 22 of the parameter “n-inserted-ci,” which represents 
the number of CI electrodes inserted into the cochlear partition. 
The bandwidths of the filters were designed to be allocated along 
a logarithmic scale, having narrower bandwidths at lower center 
frequencies and broader bandwidths at higher center frequencies. 

With 22 designated channels in the defined frequency range (0.15 
to 8kHz), the center frequency and bandwidth for the lowest 
frequency channel were 171 and 42 Hz, and the highest chan-
nel were 7668 and 672 Hz, respectively. In this study, the filter 
bank consisted of infinite impulse response filters followed by 
envelope detection based on rectification and low-pass filtering 
(Rect-LP + infinite impulse response). Note that this differs from 
the Fast Fourier Transform employed in the commercial ACE CI 
strategy. However, previous studies indicate there is no significant 
difference in speech recognition between these two types of fil-
ter configurations in certain conditions (Ghrissi & Cherif 2012). 
Under the assumption of using a slim, straight electrode array, 
the CI length parameter in the CIS program was set to 20mm 
and the number of inserted electrodes was set to 22. Because the 
objective of this study was to focus on the effect of the number 
of maxima and SR, other irrelevant parameters such as channel 
interaction and synchronization were not manipulated. 

Each of the three VCVs was acoustically processed using four 
different parameter combinations simulating various SRs and 
the number of maxima of a CI signal processing strategy. These 
parameter settings were selected to feature relatively fast/slow 
SRs and high/low number of maxima; 1800/20, 1800/8, 500/20, 
and 500/8. They are clinically applicable parameter settings used 
routinely in CI mapping sessions. Most importantly, these settings 
and VCVs showed the greatest differences in identification perfor-
mance from our extensive pilot testing of 20 consonant alterna-
tives, thus maximizing the possibility of observing differences in 
the ERPs. Likewise, we found that perceptual differences between 
the three VCVs was greatest between 500/20 and 1800/8 than any 
other pairs among 12 parameter configurations. In this regard, we 
adopted these tokens in the present study under the assumption 
that they would allow us to measure more explicit neural responses 
in relation to behavioral performance. The rate/maxima parameter 
combinations used in this study are shown in Table 1. 

Stimulus Presentation and Behavioral Task 
Recording of ERPs and speech identification tasks were con-

ducted simultaneously. The tasks were implemented in a double-
walled electroacoustically shielded sound-attenuating chamber 
(Industrial Acoustics Company, Inc., North Aurora, IL). Behav-
ioral speech identification was administered in a three alterna-
tive forced choice (3AFC) procedure having alternatives of / 

Fig. 1. Stimulus time waveforms and spectrograms. A, Unprocessed speech tokens /aKa/, /aNa/, and /aSHa/. B, Example of CI vocoding of the token /aKa/ with 
different rate/maxima combinations. 
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aKa/, /aNa/, and /aSHa/. Participants were seated in the middle 
of the sound booth with access to a monitor and a keyboard, and 
asked to press the key that matched the stimulus they perceived. 
They were encouraged to respond as accurately and quickly as 
possible. For familiarization, a short practice session preceded 
the main task using unprocessed (non-vocoded) stimuli. No 
feedback was provided during actual experimental trials. 

The 12 CI-simulated speech stimuli were presented in a 
random sequence controlled by MATLAB 2013 (The Math-
Works, Inc., Natick, MA) routed through a TDT RP2 digital 
interface (Tucker Davis Technologies, Alachua, FL). Each 
individual token was presented 150 times, resulting in a 
total of 1800 (=12 tokens × 150 repetitions) speech stimuli 
for each subject. The task was divided into 2 to 3 blocks to 
provide short periodic breaks and avoid fatigue. Stimuli were 
delivered binaurally via insert earphones (ER-2, Etymotic 
Research) using fixed, rarefaction polarity at an intensity of 
81 dB SPL. Following participants’ behavioral response, the 
proceeding stimulus commenced with a jittered interstimulus 
interval between 800 and 1000 msec (uniform distribution). 
The entire experiment lasted ~1 hr per listener. 

Evoked Potential Recording 
During the speech identification task, neuroelectric responses 

were recorded differentially between electrodes placed on the 
high fore-head (~Fpz) referenced to linked mastoids (A1/A2) 
(Bidelman et al. 2013; Bidelman 2015; Krishnan et al., 2010). We 
used this single channel montage given its applicability to clinical 
use over multichannel configurations (Picton et al. 1977) and the 
frontocentral distribution of the auditory cortical ERPs (Picton et 
al. 1999). Another electrode placed on the mid-forehead served 
as the common ground. Impedances of all the electrode contacts 
were maintained below 5kΩ. In accordance with the number of 
repetitions in the identification task, individual subjects’ ERPs 
were composed of averages of 150 epochs for each parameter set. 
A total of 1800 (=12 subjects × 150 repetitions) neural recordings 
were obtained for each of the 12 parameter conditions. Continu-
ous EEGs were digitized at 5 kHz (Curry 7; SynAmps RT ampli-
fiers; Compumedics Neuroscan) using an online passband of 0.05 
to 2000 Hz. EEGs were then epoched 100 msec before to 500 
msec after the stimulus onset (i.e., −100 to 500 msec window), 
baseline corrected to the prestimulus interval, and averaged in the 
time domain to obtain ERPs for each stimulus condition and par-
ticipant. Epochs in which neural activity exceeded ±50 to 75 μV 
(e.g., blinks) were rejected as artifacts before averaging (artifact 
thresholds were determined for individual subjects). Grand aver-
age ERPs were then further band pass filtered off-line between 
3 to 30 Hz before peak measurement to isolate cortical activity 
from the EEG and quantify evoked responses (Bidelman et al. 
2013; Bidelman 2015; cf. Fig. 3). 

Behavioral Data Analysis (Accuracy and RTs) 
Listeners’ behavioral identification responses were recorded 

in MATLAB. Accuracy (%-identification) and reaction times 
(RTs) were computed for each stimulus and VCV class. Accu-
racy was determined as the average percent of speech items 
correctly identified as the appropriate consonant class (/aKa/, / 
aNa/, and /aSHa/). RTs were computed as the median time lapse 
between the onset of stimulus presentation and the listener’s 
behavioral response (i.e., button press). 

Evoked Potential Analysis 
P1–N1–P2 Peak Quantification • We quantified prominent 
deflections (i.e., “waves”) of each listener’s cortical ERPs using 
well-established procedures from our laboratory (Bidelman et al. 
2013; Bidelman & Alain 2015). The auditory ERPs typically con-
sist of a series of obligatory wave (P1–N1–P2) occurring over the 
first ~150 to 200 msec after the time-locking stimulus. However, 
initial visual inspection of the data revealed that the P1 was weak 
and highly variable across listeners, consistent with previous 
reports examining the neural correlates of other speech degrada-
tions (Parbery-Clark et al. 2011; Bidelman & Howell 2016). To 
this end, we measured amplitude and latencies for the N1 and P2 
waves only. The N1–P2 complex was of particular interest in the 
present study as it is highly sensitive to speech perception tasks 
(Tremblay et al. 2001; Alain et al. 2007; Bidelman et al. 2013, 
2014a) and prone to the neuroplastic effects of speech sound 
training (Tremblay et al. 2001; Alain et al. 2007). N1 and P2 
peaks were automatically determined by Curry 7 (Compumed-
ics Neuroscan) as the minimum/maximum peaks within a search 
window of 75 to 220 msec. Automatic peak selections were then 
manually confirmed by the first author and corrected in instances 
of spurious selection (e.g., bifid peak) based on a comparison 
with the grand average trace (Fig. 3). 
Discriminant Analysis and Neural Confusion Matrices • In 
addition to conventional peak analysis, we aimed to determine 
which combination of CI parameters (SR and number of max-
ima) produced the most distinct neural responses. We reasoned 
that parameters which produce maximally different cortical ERPs 
represent optimal coding strategies and would allow robust per-
ceptual identification of the three VCV stimuli (cf. Chang et al. 
2010; Bidelman et al. 2013). To this end, a quadratic DA (QDA) 
was conducted to determine the best weighted combination of the 
four neural predictor variables (N1 and P2 amplitudes and latencies) 
that best discriminate between the three VCV classes (i.e., /aKa/, / 
aNa/, and /aSHa/). The QDA was developed at the group level with 
a set of quadratic equations that was designed to classify listeners’ 
neural responses into one of several mutually exclusive groups on 
the basis of the four predictor variables extracted from their ERPs 
(peak and latencies of the N1 and P2 waves). In the QDA, each 
listener’s dependent measures (i.e., N1 and P2 amplitudes/latencies) 
were treated as an independent set of observations. QDA was imple-
mented in MATLAB using the “fitdiscr” function with prior prob-
abilities set to p = 0.33 (i.e., chance level for three stimulus classes). 

Classification performance of the discriminant functions were 
determined by comparing the predicted VCV from each ERP against 
the ground truth stimulus used to actually evoke the response. This 
resulted in both a classification accuracy and error rate that were 
then used to construct a “neural confusion matrix.” The confusion 
matrices quantitatively indicate the degree (%-correct) to which the 
combined neural measures could correctly classify the input vowel 

TABLE 1. Cochlear implant simulated stimulus set consisting of 
three vocoded speech sounds varying in high/low stimulation 
rates and high/low number of spectral maxima 

/aKa/ /aNa/ /aSHa/ 

Stimulation rate (pps)/# maxima 1800/20 1800/20 1800/20 
1800/8 1800/8 1800/8 
500/20 500/20 500/20 
500/8 500/8 500/8 
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stimulus (/aKa/, /aNa/, /aSHa/). We further assessed generalizabil-
ity of the QDA predictions using k-fold crossvalidation. K-fold 
crossvalidation is a commonly used machine-learning technique 
for evaluating the performance of a classifier and generalization 
to an independent dataset. In this technique, the dataset is parti-
tioned into k subsamples (folds). In this study, we set k = N, where 
N is number of observations (subjects), which is equivalent to a 
leave-one-out resampling. For each k sample, was the QDA func-
tion was recomputed from the remaining participants. This was 
repeated until every one of the 12 participants was used for valida-
tion. Results were then averaged across the k-folds to arrive at a 
cross-validated estimate of accuracy. Although cross-validated per-
formance is typically lower than that obtained on the training set, 
it helps prevent overfitting. Neural confusion matrices were con-
structed for each of the four CI parameter combinations (Table 1). 
The rate/maxima settings producing the largest (cross-validated) 
classification accuracy were taken as the optimal combination of 
CI settings that maximize perceptual identification. 
Information Transfer Analysis • We used information transfer 
(IT) (Miller & Nicely 1955) to more directly assess the corre-
spondence between stimulus input and behavioral/neural output. 
IT is defined as the ratio of transmitted information between x and 
y [i.e., T(x;y)] to the input entropy (H 

x
), expressed as a percent. 

T(x;y) represents the transmission of information (in an informa-
tion theoretic sense) from x to y, measured in bits per stimulus, 
and was computed from confusion matrices via Equation 1: 

T x y  p
p p

pij 
i j 

ijij 

; ,( ) = −˙ log2 
(1) 

where p
i
 and p

j
 are the probabilities of the observed input and 

output variables, respectively, and p
ij
 is the joint probability of 

occurrence for observing input i with output j. These probabilities 
were computed from the confusion matrices as p

i
= n

i
/N, p

j
= n

j
/N, 

and p
ij
= n

ij
/N, where n

i 
 is the frequency of stimulus i, n

j 
 is the 

frequency of response j, and n
ij 
 is the frequency of the joint occur-

rence of stimulus i and response j (i.e., diagonal elements of the 
confusion matrix) in the sample of N total observations (Miller & 
Nicely 1955). The input entropy H 

x 
 is given by Equation 2: 

H p px x x 
x 

= −˙ log2 (2) 

In the present study, all stimuli occurred with equal probability 
(i.e., p

x
 = 0.33). IT was then computed as (Equation 3) 

IT = 
T x  y

H x 

( ; ) (3) 

This metric varies from 0 to 1. Intuitively, if the transmission 
is poor and a listener’s response does not closely correlate with 
the stimulus, then IT will approach zero; alternatively, if the 
response can be accurately predicted from the stimulus then IT 
will approach 1 (i.e., 100% IT). IT was computed from both the 

behavioral and neural confusion matrices. Comparisons of IT 
across stimulus conditions allowed us to assess which combina-
tion of CI settings optimally transmitted information in listen-
ers’ neural and perceptual responses. 

Statistical Analysis 
Unless otherwise noted, repeated measures (rm) analysis of 

variance (ANOVAs) were conducted separately on each dependent 
measure. Three within-subject factors (VCV, rate, and maxima) 
were used to determine significant behavioral (RT and percent 
correct) and neural (latency and amplitude of N1/P2) response 
variations as a function of combinations of SRs and number of 
maxima using IBM SPSS (v.23). Following omnibus analyses, 
post hoc multiple comparisons were employed using Bonferroni 
corrections to control Type I error inflation. An a priori alpha level 
was set at α = 0.05 for all statistical tests. 
Brain–Behavior Relations • We also aimed to assess the 
relation between brain and behavioral measures. To this end, 
a generalized linear mixed effects model (GLME) (logistics 
regression) was used to evaluate the relation between ERP 
response measures and behavioral speech identification accu-
racy. In this analysis, we considered the combination of all ERP 
amplitude and latency measures, as well as their interactions 
as predictors of speech identification scores; in addition to 
this fixed effect, subjects were modeled as a random factor by 
allowing for a random intercept per subject [i.e., correct ~ n1a 
mp*p2amp*n1lat*p2lat+(1|subject)]. Logistics regression was 
achieved using the “fitglme” function in MATLAB. The behav-
ioral responses we aimed to measure were a binary response 
(i.e., correct/incorrect). Consequently, we used a binomial dis-
tribution and canonical logit link function to model the relation 
between neural and perceptual responses (Jaeger 2008)*. 

RESULTS 

Behavioral Results 
Despite the degraded clarity of speech tokens, listeners 

showed high perceptual performance on the speech identifica-
tion task. Group mean average speech identification accuracy 
(percent correct scores) for all 12 conditions were greater than 
97% (Fig. 2A; see also Fig. S2A of Supplemental Digital Con-
tent, which shows boxplots and individual subject data, http:// 
links.lww.com/EANDH/A324). Overall speech identification 
did not differ with changes in either SR [F(1, 11) = 0.688, p = 
0.425] or maxima [F(1, 11) = 0.104, p = 0.753]. However, we 
found a significant main effect of VCV on identification scores 
[F(2, 22) = 3.73, p = 0.04]. Bonferroni pairwise comparisons 
revealed that /aNa/ was significantly higher than /aKa/ (but not / 
aSHa/) in terms of speech identification scores. We did not find 
interaction effects of VCV × Rate [F(2, 22) = 2.345, p = 0.119] 
or VCV × Maxima [F(2, 22) = 1.911, p = 0.172]. However, we 
found a significant interaction effect of Rate × Maxima [F(1, 
11) = 5.427, p = 0.04]. Follow-up contrasts revealed that when 

*The analysis of near-ceiling effects would be problematic using traditional 
Gaussian-based correlations. Even the RAU-transformed data (Studebaker 
1985) does not mitigate proportions close to floor or ceiling. Consequently, 
we chose to analyze brain–behavior relationships using a logistics GLME 
with a logit link function that modeled the categorical nature of the response 
(0 = incorrect vs. 1 = incorrect) via a binomial distribution. This greatly 
improves validity and is the preferred method for data approaching 0 or 
100% (Jaeger 2008). 

http://links.lww.com/EANDH/A324
http://links.lww.com/EANDH/A324
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maxima is fixed at a small number (8), higher rates (1800 pps) 
resulted in better speech identification than the lower rates (500 
pps). In contrast, for a larger number of maxima (20), better 
performance is achieved with a lower (500 pps) compared with 
a higher rate (1800 pps). 

RTs for speech identification are shown in Figure 2B (see 
also Fig. S2B, Supplemental Digital Content, http://links.lww. 
com/EANDH/A324). No main effects of either rate or maxima 
were found in terms of RTs across the stimulus conditions [rate: 
F(1, 11) = 0.036, p = 0.852; maxima: F(1, 11) = 0.088, p = 
0.773]. However, there was again a main effect of VCV [F(2, 
22) = 9.96, p = 0.001]. Bonferroni pairwise comparison indi-
cated that /aNa/ was identified significantly faster than either / 
aKa/ or /aSHa/. The analysis indicated no interaction effects of 
either VCV × Maxima [F(2, 22) = 1.768, p = 0.194] or Rate × 
Maxima [F(1, 11) = 1.627, p = 0.228]. However, we found an 

interaction effect between VCV and rate [F(2, 22) = 3.62, p = 
0.044]. For /aKa/ and /aSHa/, higher rates (1800 pps) lead to 
faster RTs than lower rates (500 pps), whereas for /aNa/, the 
lower rate (500 pps) caused faster RTs than the higher rate (1800 
pps). Collectively these findings suggest that both the accuracy 
and speed of speech identification is dependent on a specific 
combination (interaction) of CI SR and number of maxima. 

Electrophysiological Results 
N1–P2 Responses • Grand average ERPs for each stimulus 
VCV token and across the four CI vocoder conditions are 
shown in Figure 3A, B, respectively. Peak amplitude and 
latency results are shown in Figures 4 and 5, respectively 
(see also Figs. S4 and S5, Supplemental Digital Content, 
http://links.lww.com/EANDH/A324). The latencies and 
amplitudes of the individual N1 and P2 waves did not show 

Fig. 2. Group mean behavioral speech identification accuracy scores (A), and reaction times (B) for the 12 CI-simulated speech conditions. The 12 types of 
stimuli are shown with a format of rate_maxima along the abscissa. Error bars denote ± 1 SEM. 

Fig. 3. Grand average cortical ERPs to CI-vocoded speech varying in stimulation rate (1800 vs. 500 pps) and spectral maxima (20 vs. 8 peaks). ERP waveforms 
(A) by stimulus token and (B) by CI rate/maxima settings (pooled across VCV tokens). Prominent wave deflections of the neural responses (N1, P2) are marked 
within the traces. t = 0 marks the onset of the time-locking speech stimulus. Positive is plotted up. 

http://links.lww.com/EANDH/A324
http://links.lww.com/EANDH/A324
http://links.lww.com/EANDH/A324
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a systematic pattern across stimulus conditions. This was 
confirmed by a rmANOVA, which revealed no significant 
difference in amplitudes and latencies of each peaks across 
the conditions; no significant main effects of three within-
subject factors (VCV, rate, and maxima) were observed for 
amplitude of N1[VCV: F(2, 22) = 2.14, p = 0.142; rate: F(1, 
11) = 0.94, p = 0.353; maxima: F(1, 11) = 0.493, p = 0.50], 
amplitude of P2 [VCV: F(2, 22) = 1.557, p = 0.23; rate: F(1, 
11) = 0.11, p = 0.742; maxima: F(1, 11) = 0.012, p = 0.91], 
latency of N1[VCV: F(2, 22) = 0.83, p = 0.45; rate: F(1, 11) 
= 3.69, p = 0.081; maxima: F(1, 11) = 0.014, p = 0.91], and 
latency of P2 [VCV: F(2, 22) = 2.60, p = 0.097; rate: F(1, 
11) = 0.29, p = 0.60; maxima: F(1, 11) = 0.30, p = 0.60]. 
That is, we found no systematic modulation in individual 

ERP components (i.e., isolated wave measures) with our CI 
parameter manipulations. Consequently, we next examined 
whether a multidimensional combination of neural measures 
could (1) accurately segregate the speech-evoked ERPs and 
(2) correctly predict listeners’ behavioral identification and 
perceptual confusions. 
Brain–Behavior Relations • We used a GLME logistics 
regression model to assess the relation between ERP measures 
and behavioral speech identification. Results revealed a sig-
nificant four-way interaction (i.e., N1amp* P2amp* N1lat* 
P2lat) between the amplitude and latency measures in pre-
dicting behavioral speech identification performance [t(28) 
= 10.70, p = 0.0014]†. This indicates that behavioral speech 
identification was indeed predicted by the combination of 

Fig. 4. Group mean amplitudes of the individual N1 (A), and P2 response (B) evoked by CI-simulated speech. Note for the N1, the modulus of the amplitude 
is shown. Error bars denote ±1 SEM. 

Fig. 5. Group mean latencies of the individual N1 (A), and P2 response (B) evoked by CI-simulated speech. Error bars denote ±1 SEM. 
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neural measures rather than any singular wave in isolation. 
Thus, subsequent analyses focused on additional multivari-
ate techniques that considered the combination of measures 
extracted from ERP responses. 
Discriminant Function Analysis • Figure 6 shows neural con-
fusion matrices derived from QDA along with those from the 
behavioral identification for each of the four pairs of CI rate/max-
ima parameters. As noted earlier, approaching ceiling effects were 
observed for behavioral identification scores over all conditions 
(>97%; cf. Fig. 2). Of particular interest is the performance of 
the neural data to classify the stimulus VCV class. Neural confu-
sion matrices considered the four variables extracted from listen-
ers’ ERP responses (amplitude and latency of N1/P2) at the group 
level, and how accurately they could segregate the three VCV 
stimulus inputs. Neural classification matrices output from QDA 
are shown in the bottom row of Figure 6. Overall, neural responses 
predicted the evoking stimulus class (/aKa/, /aNa/, /aSHa) with 
~60 to 80% accuracy. Because we can expect to get only 33% 
of the classifications correct by chance, these accuracy rates 
represent a considerable improvement above random guess. On 
average, 77.8% of VCVs were accurately classified in the 1800/8 
condition, followed by 500/8 (75%), 500/20 (61.1%), and 1800/20 
(61.1%). Thus, neural predictions of perceptual confusions were 
found to be most accurate for the 1800/8 setting pair. 

As expected, considerably fewer correct classifications were 
made in the cross-validated analysis: 1800/8 (50.0%), 500/8 
(47.2%), 500/20 (50.0%), and 1800/20 (27.8%). Nevertheless, 
classification performance was still well above chance for three 
of the four parameter settings and highest for the 1800/8 pair-
ing. These findings indicate that speech sounds could be reliably 
predicted in an objective manner from multivariate measures of 
listeners’ ERPs but not necessarily via conventional univariate 
(peak analysis) approaches. 
IT Analysis • On the basis of the behavioral and neural confu-
sion matrices, we computed the amount of information accessible 
to listeners via IT analysis. IT is obtained from the confusion 
matrix by calculating the number of bits accurately predictable by 
the listener and dividing this result by the number of bits avail-
able in the input stimulus (Miller & Nicely 1955; Sagi & Svirsky 
2008). 

IT results are shown in Figure 7 for behavioral and neural 
responses. IT scores approaching 100% indicate perfect predic-
tion of the response given the input; values approaching 0 indicate 
total independence of the stimulus and response. Results show 
that IT is near ceiling for listeners’ behavioral confusions. In con-
trast, IT computed on neural confusions indicates lower (but none-
theless reliable) rates of IT from ERP responses. IT was largest for 
the CI parameter combination 1800/8 followed by 500/8, 500/20, 
and 1800/20, consistent with classification results (Fig. 6). 

DISCUSSION 

In the present study, we examined the effects of parametric 
variations in CI processor settings (number of spectral maxima 
and SR) on the auditory cortical ERPs with the aim of using 
evoked responses to identify optimal combinations of settings 
that maximize speech encoding and perception. Univariate 

analysis of latencies and amplitudes of the N1 and P2 ERPs 
failed to determine the best set of parameters that robustly dif-
ferentiate speech. In contrast, by considering these four evoked 
responses simultaneously, multivariate analysis (discriminant 
function and IT analyses) identified a particular set of param-
eters that best distinguished speech-evoked neural activity. Our 
findings suggest that the auditory cortical ERPs might be used as 
an objective technique to identify relevant CI settings that yield 
maximally contrastive speech coding and are predictive of lis-
teners’ behavioral speech identification performance. 

Behavioral Identification of CI Speech 
Behavioral identification and RTs did not show strong modu-

lations with CI rate or maxima. However, behavioral measures did 
vary in response to certain VCV tokens (i.e., /aNa/ versus /aKa/ 
and /aSHa/). This finding is undoubtedly due to acoustic/phonetic 
features of these consonants. The consonant, /n/, in /aNa/ which 
is more distinct in terms of phonetic features, such as nasality 
and voicing, may result in better performance. Indeed, voicing 
information has been found to be a robust cue in consonant iden-
tification studies (Van Tasell et al. 1987; Dannhauer et al. 1990; 
Dorman et al. 1990; Munson et al. 2003), and is reflected not only 
in recognition tests but also RT paradigms (Laguitton et al. 2000). 
The better behavioral performance for /aNa/ likely results from 
the fact that our other two VCV stimuli (/aKa/ and /aSHa/) share 
a voiceless feature which could be a source of confusion between 
these two tokens. This notion is supported by our behavioral con-
fusion matrices (Fig. 6), which showed slightly higher rates of 
confusions between /aKa/ and /aSHa/. 

Identification of Optimal Spectral Maxima and SR CI 
Settings Via ERPs 

Several previous studies have examined the interaction 
between spectral and temporal cues with regard to CI users’ 
speech perception. Nie et al. (2006) found a trade-off between 
spectral and temporal information in five MED-EL CI recipi-
ents. Their results showed that consonant and sentence recog-
nition scores remained unchanged with increasing number of 
electrodes coupled with decreasing SR. Such a trade-off between 
spectral and temporal cues has frequently been observed using 
variations of different parameters (e.g., cut-off frequency of the 
envelope filter) in other previous studies (Shannon et al. 2001; 
Xu et al. 2002, 2005). This implies that the two crucial factors 
for speech perception, spectral and temporal cues, interact with 
one another to compensate for the other diminished cue. In the 
present study, we examined different combinations of spectral 
(maxima) and temporal (SR) CI settings to examine these pos-
sible interactions at a neural level and identify combinations 
which maximized the encoding and perceptual identification of 
speech. 

Our findings further extend recent studies examining the effects 
of CI signal processing settings on the auditory ERPs. Using acous-
tically vocoded consonant–vowel–consonants, Friesen et al. (2009) 
found a decrease in peak latencies and an increase in amplitudes with 
increasing number of channels from 2 to 16, indicative of improved 
speech encoding. However, changes in P1–N1–P2 responses did not 
correlate with behavioral identification scores (Friesen et al. 2009). 
Although our study design differed in the CI processing under inves-
tigation (e.g., we did not vary channel numbers), our data indicate 
that it is the interaction of these components (rather than isolated 

†The GLME also revealed main effects of N1amp (p < 0.0001), N1lat (p 
= 0.021), P2lat (p = 0.021), and P2amp (p = 0.016). However, in light of 
the significant four-way interaction between measures, these main effects 
become meaningless. 
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waves) that best predict behavioral responses. Moreover, multivari-
ate analyses of the ERPs lead us to infer that objective determination 
of CI settings might be best performed by considering a larger set of 
neural features than what is supplied by individual response compo-
nents alone (cf. Friesen et al. 2009). 

Our findings identified that the SR/maxima combination of 
1800/8 produced the most distinctive neural representations 

as measured via the ERPs (at least within the parameter space 
under study, Table 1). Even though the 1800/8 is neither a set 
having higher spectral cues nor a default setting of manufactur-
ers, we found it was the optimal set via discriminant analysis 
of the N1/P2 responses. This agrees with anecdotal reports of 
some CI manufacturers. For example, in the Nucleus 24 sys-
tem, 1800 SR with 8 channels/maxima is a consistent parameter 
combination selected by participants in informal listening tasks 
(Cochlear-corporation 2010). Based on formal empirical CI 
studies, it is now well accepted that a larger number of CI chan-
nels produces better speech identification (Shannon et al. 1995), 
but that perceptual performance does not change (i.e., asymp-
totes) once a patient has saturated in their performance (Loizou 
et al. 1999; Dorman et al. 2002). Our findings, however, reveal 
that a parameter set with a relatively small number of maxima 
(8) might be superior to those with a higher number of maxima 
(20), at higher SRs (and in normal-hearing listeners). This again 
highlights an important interaction between spectral and tempo-
ral processing of CI devices (Nie et al. 2006). 

In general, we did not find that the fastest SR and highest num-
ber of spectral maxima yielded the highest accuracy in neural 
classifications. Instead, the highest SR coupled with the lowest 
maxima under study (i.e., 1800/8) produced optimal results. A 
plausible implication of this finding is that both maxima and SR 
have reciprocal influence on the quality of CI-processed sounds 
resulting in different speech perception performance. This is con-
sistent with findings from other studies in which optimal SR or 
channels are not simply at the extreme end of a given parameter 
space (Friesen et al. 2005). Instead, our data are most consistent 
with the notion that there are ranges of useful settings and inter-
actions between CI parameters which lead to maximum speech 
perception (Holden et al. 2002; Cochlear-corporation 2010). 

Univariate Versus Multivariate Techniques for CI 
Mapping Via ERPs 

Our findings highlight the fact that (1) there is considerable 
behaviorally-relevant information contained in scalp-recorded 

Fig. 6. Behavioral (top row) and neural (bottom row) confusion matrices for speech identification under four different CI rate/maxima parameter combinations. 
For behavioral confusion matrices, columns represent the true stimulus and rows are participants’ perceptual response. For neural confusion matrices, rows 
represent the predicted VCV class and columns the actual input stimulus. Diagonals show correct responses. Both raw and cross-validated (xval) classification 
accuracy are shown above each panel. Chance level = 33%. *Rate/maxima combination producing the best cross-validated classification accuracy. 

Fig. 7. IT for perceptual and neural confusion matrices. IT represents the 
degree to which listeners’ responses can be accurately predicted given 
the known input stimulus (Miller & Nicely 1955). Values approaching 
100% indicate perfect prediction of the response given the input; values 
approaching 0 indicate total independent of the stimulus and response. IT 
is near ceiling for behavioral confusions. IT computed on neural confusions 
indicate that the CI parameter combination 1800/8 yields maximal IT, con-
sistent with classification results (Fig. 6). 
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potentials and (2) these correlates are only revealed when consid-
ering the complete series of brain responses unfolding over time. 
In this regard, our study corroborates several recent attempts to 
apply multivariate approaches (e.g., principal component analy-
sis, DA) to the analysis of ERPs and their prediction of speech 
behaviors (Do & Kirk 1999; Chang et al. 2010; Davies et al. 2010; 
Bidelman et al. 2013). In particular, we have previously shown 
that using multivariate techniques (clustering, multidimensional 
scaling), listeners’ speech-ERPs can be correctly classified into 
perceptually-meaningful groups which mimic their categorical 
perception (Bidelman et al. 2013; Bidelman & Alain 2015; Bidel-
man & Lee 2015). That is, (multivariate) brain activity clusters 
according to phonetic rather than acoustic rules and mirrors lis-
teners’ behavioral speech classification. These neurophysiological 
correlates of speech identification are not always revealed when 
considering only individual ERP components (Bidelman et al. 
2014b). While we did not find reliable modulations of the indi-
vidual ERP waves, we also note that our use of highly degraded 
(vocoded) tokens may have precluded strong effects at the single 
component level. We would however predict much stronger stim-
ulus-related changes in the N1 and/or P2 for clean (undegraded) 
speech (Agung et al. 2006; Bidelman, et al. 2014b). 

In this regard, we infer that prominent peaks of the ERPs should 
be considered a series of related (rather than independent) neural 
events that mark the temporal evolution of auditory speech pro-
cessing. While traditional univariate approaches (e.g., ANOVA) 
are concerned only with independently assessing variation in sin-
gular peak characteristics, multivariate approaches (adopted here) 
consider multiple properties of the neural response simultane-
ously and better characterize the overall pattern of neural response 
to speech. This notion is supported by current data: optimal CI 
settings were identified by considering a combination of neural 
measures whereas individual ERP waves in isolation failed to 
show systematic modulations across CI speech conditions. 

Although the best-parameter setting identified via behav-
ioral and neural responses were identical (1800/8) in the 
present study, some caution is warranted when drawing conclu-
sions between the neural and behavioral data. First, the rank-
ing from best to worst in accuracy was somewhat discrepant 
between behavioral and neural data (Fig. 6); 1800/8 > 500/20 
> 1800/20 > 500/8 for behavioral versus 1800/8 > 500/8 > 
500/20 = 1800/20 for neural responses. This latter neural pat-
tern was also identified in our ERP IT results. We assume that 
this discrepancy is presumably caused by the approaching ceil-
ing effect in behavioral identification which muted differences 
in performance across the four parameter settings. However, 
we would argue that identifying the most optimal parameters 
that maximize neural/behavioral speech identification accuracy 
is most important for potential application to CI fitting rather 
than the exact ordering of conditions according to their dimin-
ishing performance. Second, neural confusion patterns also 
differed from those observed in behavioral identification test. 
Behaviorally, /aKa/ or /aSHa/ were less confused with /aNa/ 
(and elicited slower RTs) due to the latter’s more distinctive 
phonetic features (e.g., voicing) that /aKa/ and /aSHa/ do not 
contain (Fig. 6). This pattern, however, was not identified in the 
confusion matrix from our neurophysiological data. The N1– 
P2 are generally considered to reflect preperceptual processing 
and stimulus coding whereas RTs/identifications reflect post 
perceptual processing after the decision event. It is possible 
that auditory coding and the decision reflect distinct channels 

of information processing (Binder et al. 2004). Alternatively, 
a causal chain of events might predict that stimulus encoding 
(N1–P2) would be related to the later decision (RTs were also 
~500 msec after the P2). Indeed, we have observed correla-
tions between N1–P2 and RTs/identifications in our previous 
studies (Bidelman et al. 2014b; Bidelman & Alain 2015) but 
this was for clean speech perception tasks. It is possible that 
signal degradation (noise, vocoding) produce further delays in 
the decision process and poorer identification of certain VCVs 
(/aKa/ and /aSHa/) that decouple sensory coding (N1–P2) 
from behavior. In addition, the ERPs are known to largely 
index transient events of the acoustic signal (Picton et al. 1974, 
1978). Thus, some discrepancies between behavioral and neu-
ral confusion patterns and accuracy might be expected if ERPs 
miss idiosyncrasies of the speech signal that are exploited at 
the behavioral level and only reflect the initial onset of speech 
tokens. However, we find this explanation unlikely in light of 
our recent ERP work in categorical perception, which demon-
strates that speech sounds (with identical stimulus onsets) can 
be used to decode speech identification from the auditory ERPs 
well above chance levels (Bidelman et al. 2013). 

Clinical Implications, Limitations, and Directions for 
Future Research 

CI mapping is a two-way communication between an audi-
ologist and patient that seeks the best fit by adjusting system 
parameters under time constraints. Our study highlights a 
potential application of ERP responses in the objective fitting 
and optimization of CI parameters. Presumably, this tech-
nique could be extended to map implant settings in difficult-
to-test patients or young infants where traditionally behavioral 
responses are impractical. 

Nevertheless, several limitations of the present study are 
worth noting. First, our behavioral identification scores showed 
considerable ceiling effects due to the small number of VCV 
alternatives and use of normal-hearing listeners. While we did 
observe a similar match between neural and behavioral speech 
confusions (Fig. 6), little variation in the behavioral data (other 
than a VCV effect) preclude firm conclusions regarding a strong 
brain–behavior correspondence. 

Second, the present study assessed acoustically vocoded CI 
speech in normal-hearing listeners using an active listening para-
digm. Although vocoded speech is thought to represent an accu-
rate acoustic proxy of real CI stimulation (Shannon et al. 1995), it 
remains to be tested whether our approach will generalize to actual 
implant patients. Although ERPs are often prolonged and weaker in 
implant patients, the N1 and P2 waves are still identifiable (Friesen 
& Picton 2010; Atcherson et al. 2011; Mc Laughlin et al. 2013), 
suggesting that the current approach should be applicable to actual 
CI users. In general, the N1 and P2 also vary between active and 
passive recording conditions; amplitudes often increase in active 
conditions compared with passive conditions (Billings et al. 2011a). 
For potential objective mapping for uncooperative patients, future 
studies using passive paradigms could be conducted to determine 
if speech classification from the ERPs is still robust without hav-
ing listeners actively engaging with sound. Several other practical 
restrictions, including the removal of electromagnetic artifact of the 
implant (Sporns et al. 2004; Hoeft et al. 2007; Mc Laughlin et al. 
2013), would need to be overcome for our approach to be directly 
translated to CI patients. 
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Third, the CI settings used in our study were selected from 
a closed set of two parameters (number of spectral maxima and 
SR) and three speech stimuli. Maxima is also a parameter only 
available in n-of-m strategy in Nucleus devices (Cochlear Cor-
poration, Macquarie University, NSW, Australia) and the role of 
SR may vary depending on signal processing strategies. Future 
studies are needed to confirm that the proposed approach gener-
alizes and can reliably identify optimal settings from among an 
open set and other relevant implant parameters (e.g., threshold 
and upper stimulation levels). 

Finally, optimal parameter settings typically vary across 
individuals (Plant et al. 2002; Arora et al. 2009). Our approach 
was based on DA which determines accuracy at the group 
level. While a DA allows for classification (prediction) of new 
observations, vetting the classifier developed in the present 
study would require application to a different (independent) 
dataset. Nevertheless, to reach a fuller understanding of the 
neural consequences of CI processor settings, it would be 
worthwhile to analyze patients’ responses on an individual or 
single trial basis. 
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