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We investigated whether the categorical perception (CP) of speech might also provide 

a mechanism that aids its perception in noise. We varied signal-to-noise ratio (SNR) 
[clear, 0 dB, −5 dB] while listeners classified an acoustic-phonetic continuum (/u/ 
to /a/). Noise-related changes in behavioral categorization were only observed at 
the lowest SNR. Event-related brain potentials (ERPs) differentiated category vs. 
category-ambiguous speech by the P2 wave (˜180–320 ms). Paralleling behavior, neural 
responses to speech with clear phonetic status (i.e., continuum endpoints) were robust 
to noise down to −5 dB SNR, whereas responses to ambiguous tokens declined 

with decreasing SNR. Results demonstrate that phonetic speech representations are 

more resistant to degradation than corresponding acoustic representations. Findings 

suggest the mere process of binning speech sounds into categories provides a robust 
mechanism to aid figure-ground speech perception by fortifying abstract categories from 

the acoustic signal and making the speech code more resistant to external interferences. 

Keywords: auditory event-related potentials (ERPs), categorical perception, speech-in-noise (SIN) perception, 
cocktail party effect, EEG 

INTRODUCTION 

A basic tenet of perceptual organization is that sensory phenomena are subject to invariance: 
similar features are mapped to common identities (equivalence classes) by assigning similar objects 
to the same membership (Goldstone and Hendrickson, 2010), a process known as categorical 
perception (CP). In the context of speech, CP is demonstrated when gradually morphed sounds 
along an equidistant acoustic continuum are heard as only a few discrete classes (Liberman et al., 
1967; Pisoni, 1973; Harnad, 1987; Pisoni and Luce, 1987; Bidelman et al., 2013). Equal physical 
steps along a signal dimension do not produce equivalent changes in percept (Holt and Lotto, 
2006). Rather, listeners treat sounds within a given category as perceptually similar despite their 
otherwise dissimilar acoustics. Skilled categorization is particularly important for spoken and 
written language, as evidenced by its role in reading acquisition (Werker and Tees, 1987; Mody 
et al., 1997), sound-to-meaning learning (Myers and Swan, 2012; Reetzke et al., 2018), and putative 
deficits in language-based learning disorders (e.g., specific language impairment, dyslexia; Werker 
and Tees, 1987; Noordenbos and Serniclaes, 2015; Calcus et al., 2016). To arrive at categorical 
decisions, acoustic cues are presumably weighted and compared against internalized “templates” 
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in the brain, built through repetitive exposure to one’s native 
language (Kuhl, 1991; Iverson et al., 2003; Guenther et al., 2004; 
Bidelman and Lee, 2015).1 

Beyond providing observers a smaller, more manageable 
perceptual space, why else might the perceptual-cognitive system 
build equivalence classes? Goldstone and Hendrickson (2010) 
argue that one reason is that categories “are relatively imperious 
to superficial similarities. Once one has formed a concept 
that treats [stimuli] as equivalent for some purposes, irrelevant 
variations among [stimuli] can be greatly deemphasized” 
(Goldstone and Hendrickson, 2010, p. 2). Based on this 
premise, we posited that categories might also aid degraded 
speech perception if phonetic categories are somehow more 
resistant to noise (Giord et al., 2014; Helie, 2017). Indeed, 
categories (a higher-level code) are thought to be more robust 
to noise degradations than physical surface features of a signal 
(lower-level sensory code) (Helie, 2017; Bidelman et al., 2019). 
A theoretical example of how categorical processing might aid 
the perception of degraded speech is illustrated in Figure 1. 

Consider the neural representation of speech as a 
multidimensional feature space. Populations of auditory 
cortical neurons code dierent dimensions of the acoustic 
input. Categorical coding could be reflected as an increase 
(or conversely, decrease) in local firing rate for stimuli that 
are perceptually similar despite their otherwise dissimilar 
acoustics (“A” and “B”) (e.g., Recanzone et al., 1993; Guenther 
and Gjaja, 1996; Guenther et al., 2004). Although noise 
interference would blur physical acoustic details and create a 
noisier cortical map, categories would be partially spared— 
indicated by the remaining “peakedness” in the neural 
space. Thus, both the construction of perceptual objects 
and natural discrete binning process of CP might enable 
category members to “pop out” among a noisy feature space 
(e.g., Nothdurft, 1991; Perez-Gay et al., 2018). Consequently, 
the mere process of grouping speech sounds into categories 
might aid comprehension of speech-in-noise (SIN)—assuming 
those representations are not too severely compromised and 
remain distinguishable from noise itself. This theoretical 
framework provides the basis for the current empirical study 
and is supported by recent behavioral data and modeling 
(Bidelman et al., 2019). 

Building on our recent eorts to decipher the neurobiology of 
noise-degraded speech perception and physiological mechanisms 
supporting robust perception (for review, see Bidelman, 2017), 
this study aimed to test whether speech sounds carrying strong 
phonetic categories are more resilient to the deleterious eects 
of noise than categorically ambiguous speech sounds. When 
category-relevant dimensions are less distinct and perceptual 
boundaries are particularly noisy, additional mechanisms for 
enhancing separation must be engaged (Livingston et al., 
1998). We hypothesized the phonetic groupings inherent to 
speech may be one such mechanism. The eects of noise on 

1Although not central to our questions, some theoretical accounts have described 
phonetic categorization in terms of a prototype-centric comparator, perceptual 
magnetic, and statistical learning mechanisms. For review of similar episodic 
accounts of categorization learning, the reader is referred to Medin and Schaer 
(1978) and Neal and Hesketh (1997). 

FIGURE 1 | Theoretical framework for noise-related influences on categorical 
speech representations. (A) The neural representation of speech is modeled 
as a multidimensional feature space where populations of auditory cortical 
neurons code different dimensions (DIM) of the input. DIMS here are arbitrary 
but could reflect any behaviorally relevant feature of speech (e.g., F0, duration, 
etc.) Both 3D and 2D representations are depicted here for two stimulus 
classes. Categorical coding (modeled as a Gaussian mixture) is reflected by 
an increase in local firing rate for perceptually similar stimuli (“A” and “B”). 
(B) Noise blurs physical acoustic details yet spares categories as evidenced 
by the resilience of the peaks in neural space. Neural noise was modeled by 
changing the variance of additive Gaussian white noise. 

the auditory neural encoding of speech are well documented 
in that masking generally weakens and delays event-related 
brain potentials (ERPs) (e.g., Alain et al., 2012; Billings et al., 
2013; Bidelman and Howell, 2016). However, because phonetic 
categories reflect a more abstract, higher-level representation 
of speech (i.e., acoustic + phonetic code), we reasoned they 
would be more robust to noise than physical features of 
speech that do not engage phonetic-level processing (i.e., 
acoustic code) (cf. Helie, 2017; Bidelman et al., 2019). To 
test this possibility, we recorded high-density ERPs while 
listeners categorized speech continua in dierent levels of 
acoustic noise. The critical comparison was between responses 
to stimuli at the endpoints vs. midpoint of the acoustic-phonetic 
continuum. Because noise should have a uniform eect on token 
comprehension (i.e., it is applied equally across the continuum), 
stronger changes at the mid- vs. endpoint of the continuum 
with decreasing signal-to-noise ratio (SNR) would indicate a 
dierential impact of noise on category representations. We 
predicted that if the categorization process aids figure-ground 
perception, speech tokens having a clear phonetic identity 
(continuum endpoints) would elicit lesser noise-related change 
in the ERPs than phonetically ambiguous tokens (continuum 
midpoint), which have a bistable (ambiguous) percept and lack 
a clear phonetic identity. 
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MATERIALS AND METHODS 

Participants 
Fifteen young adults (3 male, 12 females; age: M = 24.3, 
SD = 1.7 years) were recruited from the University of Memphis 
student body. Sample size was based on previous studies on 
categorization including those examining noise-related changes 
in CP (n = 9–17; Myers and Blumstein, 2008; Liebenthal et al., 
2010; Bidelman et al., 2019). All exhibited normal hearing 
sensitivity confirmed via a threshold screening (i.e., <20 dB 
HL, audiometric frequencies 250 – 8000 Hz). Each participant 
was strongly right-handed (87.0 ± 18.2% laterality index; 
Oldfield, 1971) and had obtained a collegiate level of education 
(17.8 ± 1.9 years). Musical training is known to modulate 
categorical processing and SIN listening abilities (Parbery-Clark 
et al., 2009; Bidelman and Krishnan, 2010; Zendel and Alain, 
2012; Bidelman et al., 2014; Bidelman and Alain, 2015b; Yoo and 
Bidelman, 2019). Consequently, we required that all participants 
had minimal music training throughout their lifetime (mean 
years of training: 1.3 ± 1.8 years). All were paid for their time 
and gave informed consent in compliance with the Declaration 
of Helsinki and a protocol approved by the Institutional Review 
Board at the University of Memphis. 

Speech Continuum and Behavioral Task 
We used a synthetic five-step vowel continuum spanning from 
“u” to “a” to assess the neural correlates of CP (Bidelman et al., 
2014; Bidelman and Alain, 2015b; Bidelman and Walker, 2017). 
Each token of the continuum was separated by equidistant 
steps acoustically based on first formant frequency (F1). 
Tokens were 100 ms, including 10 ms of rise/fall time to 
reduce spectral splatter in the stimuli. Each contained identical 
voice fundamental (F0), second (F2), and third formant (F3) 
frequencies (F0: 150, F2: 1090, and F3: 2350 Hz), chosen to 
roughly approximate productions from male speakers (Peterson 
and Barney, 1952). Natural speech (and vowels) can vary 
along multiple acoustic dimensions. However, auditory ERPs 
are also highly sensitive to multiple acoustic features. Thus, 
although our synthetic tokens are somewhat artificial, we chose 
to parametrize only one acoustic cue (F1) to avoid confounding 
the interpretation of our ERP eects. Consequently, F1 was 
parameterized over five equal steps between 430 and 730 Hz such 
that the resultant stimulus set spanned a perceptual phonetic 
continuum from /u/ to /a/ (Bidelman et al., 2013).2 Speech stimuli 
were delivered binaurally at 75 dB SPL through shielded insert 

2Although vowel sounds are perceived less categorically than other speech sounds 
(e.g., stop-consonants; Pisoni, 1973, 1975; Altmann et al., 2014), they do not carry 
intrinsic features upon which to make category judgments (formant transitions 
in consonants, for example, allow comparisons within the stimulus itself) (for 
discussion, see Xu et al., 2006). In contrast, steady-state features like the F1 contrast 
of our static vowels lack an intrinsic reference so categorical hearing of these 
stimuli necessarily requires acoustic features be matched to the best exemplar in 
long-term memory (Pisoni, 1975; Xu et al., 2006). Thus, we explicitly chose vowels 
because they are likely to better reflect categorical brain processing as indexed 
via physiological measures (e.g., Lewis and Bidelman, 2020). Utilizing vowels also 
ensured the entire stimulus contributed to the categorical percept rather than only 
the initial transient onset (cf. VOT stimuli) thereby maximizing the possibility that 
ERPs could be used to dierentiate category-level information. 

earphones (ER-2; Etymotic Research) coupled to a TDT RP2 
processor (Tucker Davis Technologies). 

This same speech continuum was presented in one of three 
noise blocks varying in SNR: clear, 0 dB SNR, −5 dB SNR 
(Figure 2). These noise levels were selected based on extensive 
pilot testing which confirmed they dierentially hindered 
speech perception. The masker was a speech-shaped noise 
based on the long-term power spectrum (LTPS) of the vowel 
set. Pilot testing showed more complex forms of noise (e.g., 
multitasker babble) were too diÿcult for concomitant vowel 
identification, necessitating the use of simpler LTPS noise. Noise 
was presented continuously so it was not time-locked to the 
stimulus presentation, providing a constant backdrop of acoustic 
interference during the categorization task (e.g., Alain et al., 
2012; Bidelman and Howell, 2016; Bidelman et al., 2018). SNR 
was manipulated by changing the level of the masker to ensure 
SNR was inversely correlated with overall sound level (Binder 
et al., 2004). Noise block order was randomized within and 
between participants. 

The task was otherwise identical to our previous neuroimaging 
studies on CP (e.g., Bidelman et al., 2013; Bidelman and Alain, 
2015b; Bidelman and Walker, 2017). During EEG recording, 
listeners heard 150 trials of each individual speech token (per 
noise block). On each trial, they were asked to label the 
sound with a binary response (“u” or “a”) as quickly and 
accurately as possible. Following listeners’ behavioral response, 
the interstimulus interval (ISI) was jittered randomly between 
800 and 1000 ms (20 ms steps, uniform distribution) to avoid 
rhythmic entrainment of the EEG and the anticipation of 
subsequent stimuli. 

Customarily, a pairwise (e.g., 1 vs. 2, 2 vs. 3, etc.) 
discrimination task complements identification functions in 
establishing CP (Pisoni, 1973). While discrimination is somewhat 

FIGURE 2 | Acoustic spectrograms of the speech continuum as a function of 
SNR. Vowel first formant frequency was parameterized over five equal steps 
(430–730 Hz, ), resulting in a perceptual phonetic continuum from /u/ to /a/. 
Token durations were 100 ms. Speech stimuli were presented at 75 dB SPL 
with noise added parametrically to vary SNR. 
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undesirable in the current study given the use of time-varying 
background noise (task-irrelevant noise cues may artificially 
inflate discrimination performance), we nevertheless measured 
2-step paired discrimination in an additional sample (n = 7) 
of listeners to further validate our claims from the main 
identification experiment (see Supplementary Material). 

EEG Recording and Preprocessing 
EEGs were recorded from 64 sintered Ag/AgCl electrodes at 
standard 10–10 scalp locations (Oostenveld and Praamstra, 
2001). Continuous data were digitized using a sampling rate of 
500 Hz (SynAmps RT amplifiers; Compumedics Neuroscan) and 
an online passband of DC-200 Hz. Electrodes placed on the outer 
canthi of the eyes and the superior and inferior orbit monitored 
ocular movements. Contact impedances were maintained <10 
k during data collection. During acquisition, electrodes were 
referenced to an additional sensor placed ∼1 cm posterior 
to the Cz channel. 

EEG pre-processing was performed in BESA R  Research (v7) 
(BESA, GmbH). Ocular artifacts (saccades and blinks) were first 
corrected in the continuous EEG using a principal component 
analysis (PCA) (Picton et al., 2000). Cleaned EEGs were then 
filtered (1–30 Hz), epoched (−200 – 800 ms), baseline corrected 
to the pre-stimulus interval, and averaged in the time domain 
resulting in 15 ERP waveforms per participant (5 tokens ∗ 3 
noise conditions). For analysis, data were re-referenced using 
BESA’s reference-free virtual montage. This montage computes 
a spherical spline-interpolated voltage (Perrin et al., 1989) for 
each channel relative to the mean voltage over 642 equidistant 
locations covering the entire sphere of the head. This montage 
is akin to common average referencing but results in a closer 
approximation to true reference free waveforms (Scherg et al., 
2002). However, results were similar using a common average 
reference (data not shown). 

ERP quantification focused on the latency range following the 
P2 wave as previous studies have shown the neural correlates of 
CP emerge around the timeframe of this component (Bidelman 
et al., 2013; Bidelman and Alain, 2015b; Bidelman and Lee, 2015; 
Bidelman and Walker, 2017, 2019). Guided by visual inspection 
of grand averaged data, it was apparent that P2 was not well 
defined as a single isolated wave, rather, it occurred in a complex. 
Thus, we measured the amplitude of the evoked potentials 
as the positive-going deflection between 180–320 ms. This 
window covered what are likely the P2 and following P3b-like 
deflections. To evaluate whether ERPs showed category-related 
eects, we averaged response amplitudes to endpoint tokens at 
the endpoints of the continuum and compared this combination 
to the ambiguous token at its midpoint (e.g., Liebenthal et al., 
2010; Bidelman, 2015; Bidelman and Walker, 2017; Bidelman 
and Walker, 2019). This contrast [i.e., mean(Tk1, Tk5) vs. Tk3] 
allowed us to assess the degree to which neural responses reflected 
“category level-eects” (Toscano et al., 2018) or “phonemic 
categorization” (Liebenthal et al., 2010). The rationale for 
this analysis is that it eectively minimizes stimulus-related 
dierences in the ERPs, thereby isolating categorical/perceptual 
processing. For example, Tk1 and Tk5 are expected to produce 
distinct ERPs due to exogenous acoustic processing alone. 

However, comparing the average of these responses (i.e., 
mean[Tk1, Tk5]) to that of Tk3 allowed us to better isolate ERP 
modulations related to the process of categorization (Liebenthal 
et al., 2010; Bidelman and Walker, 2017, 2019).3 

Averaging endpoint responses doubles the number of trials 
for the endpoint tokens relative to the ambiguous condition, 
which could mean dierences were attributable to SNR of the 
ERPs rather than CP eects, per se (Hu et al., 2010). To rule 
out this possibility, we measured the SNR of the ERPs as 
10log(RMSERP/RMSbaseline) (Bidelman, 2018) where RMSERP and 
RMSbaseline were the RMS amplitudes of the ERP (signal) portion 
of the epoch window (0–800 ms) and pre-response baseline 
period (−200 – 0 ms ms), respectively. Critically, SNR of the 
ERPs did not dier across conditions (F5,70 = 0.56, p = 0.73), 
indicating that neural activity was not inherently noisier for a 
given token type or acoustic noise level. Additionally, a split-
half analysis (even vs. odd trials) indicated excellent reliability of 
ERP amplitudes at each SNR condition (Cronbach’s-αclean = 0.94; 
α0 dB = 0.83; α−5 dB = 0.81) (Streiner, 2003), suggesting highly 
stable EEG responses within our sample, even in the noisiest 
listening conditions. 

Behavioral Data Analysis 
Identification scores were fit with a sigmoid function 
P = 1/[1 + e−β1(x−β0)], where P is the proportion of trials 
identified as a given vowel, x is the step number along the 
stimulus continuum, and β0 and β1 the location and slope 
of the logistic fit estimated using non-linear least-squares 
regression. Comparing parameters between SNR conditions 
revealed possible dierences in the location and “steepness” 
(i.e., rate of change) of the categorical boundary as a function of 
noise degradation. Larger β1 values reflect steeper psychometric 
functions and thus stronger CP. 

Behavioral speech labeling speeds (i.e., reaction times [RTs]) 
were computed as listeners’ median response latency across 
trials for a given condition. RTs outside 250–2500 ms were 
deemed outliers (e.g., fast guesses, lapses of attention) and 
were excluded from the analysis (Bidelman et al., 2013; 
Bidelman and Walker, 2017). 

Statistical Analysis 
Unless otherwise noted, dependent measures were analyzed using 
a one-way, mixed model ANOVA (subject = random factor) with 
fixed eects of SNR (3 levels: clear, 0 dB, −5 dB) and token [5 
levels: Tk1-5] (PROC GLIMMIX, SAS R  9.4; SAS Institute, Inc.). 
Tukey–Kramer adjustments controlled Type I error inflation for 
multiple comparisons. The α-level for significance was p = 0.05. 
We used repeated measures correlations (rmCorr) (Bakdash and 
Marusich, 2017) to assess brain-behavior associations within 
each listener. Unlike conventional correlations, rmCorr accounts 
for non-independence among observations, adjusts for between 
subject variability, and measures within-subject correlations by 

3While we interpret this contrast to reflect dierences in categorial processing, 
it could also relate to the ambiguity in access to the category label (Hanley and 
Roberson, 2011; Best and Goldstone, 2019). Still, an ambiguity eect might be 
expected to produce larger ERPs to ambiguous speech (i.e., Tk3 > Tk1/5), which 
is not the observed direction of our ERP eects (e.g., Figure 5; Tk1/5 > Tk 3). 
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evaluating the common intra-individual association between two 
measures. We used the rmCorr package (Bakdash and Marusich, 
2017) in the R software environment (R Core Team, 2018). 

RESULTS 

Behavioral Identification (%, RTs) 
Behavioral identification functions are shown across the dierent 
noise SNRs in Figure 3A. Listeners’ identification was more 
categorical (i.e., dichotomous) for clear speech and became 
more continuous with poorer SNR. Analysis of the slopes (β1) 
confirmed a main eect of SNR (F2,28 = 35.25, p < 0.0001) 
(Figure 3B). Tukey–Kramer contrasts revealed psychometric 
slopes were unaltered for 0 dB SNR relative to clear speech 
(p = 0.33). However, −5 dB SNR noise weakened categorization, 
flattening the psychometric function (−5 dB vs. 0 dB, p < 0.0001). 
These findings indicate the strength of categorical representations 
is resistant to acoustic interference. That is, even when signal and 
noise compete at equivalent levels, categorical processing persists. 
CP is weakened only for severely degraded speech (i.e., negative 
SNRs) where the noise exceeds the target signal. 

Noise-related changes in the psychometric function could 
be related to uncertainty in category distributions (prior 
probabilities) (Giord et al., 2014) or lapses of attention due 
to task diÿculty rather than a weakening of speech categories, 
per se (Bidelman et al., 2019). To rule out this latter possibility, 
we used Bayesian inference (psignifit toolbox; Schütt et al., 
2016) to estimate individual lapse (λ) and guess (γ) rates from 
participants’ identification data. Lapse rate (λ) was computed as 
the dierence between the upper asymptote of the psychometric 
function and 100%, reflecting the probability of an “incorrect” 
response at infinitely high stimulus levels (i.e., responding “u” 
for Tk5; see Figure 3A). Guess rate (γ) was defined as the 
dierence between the lower asymptote and 0. For an ideal 
observer λ = 0 and γ = 0. We found neither lapse (F2,28 = 2.41, 
p = 0.11) nor guess rate (F2,28 = 1.45, p = 0.25) were modulated 
by SNR. This helps confirm that while (severe) noise weakened 
CP for speech (Figure 3B), those eects were not driven by a 

lack of task vigilance or guessing, per se (Schütt et al., 2016; 
Bidelman et al., 2019). 

The location of the perceptual boundary (Figure 3C) varied 
marginally with SNR but the shift was significant (F2,28 = 5.62, 
p = 0.0089). Relative to the clear condition, −5 dB SNR speech 
shifted the perceptual boundary rightward (p = 0.011). This 
indicates a small but measurable bias to report “u” (i.e., more 
frequent Tk1-2 responses) in the noisiest listening condition.4 

Behavioral RTs, reflecting the speed of categorization, are 
shown in Figure 3D. An ANOVA revealed RTs were modulated 
by both SNR (F2,200 = 11.90, p < 0.0001) and token (F4,200 = 5.36, 
p = 0.0004). RTs were similar when classifying clear and 0 dB SNR 
speech (p = 1.0) but slowed in the −5 dB condition (p < 0.0001). 
Notably, a priori contrasts revealed this noise-related slowing 
in RTs was most prominent at the phonetic endpoints of the 
continuum (Tk1-2 and Tk4-5); at the ambiguous Tk3, RTs were 
identical across SNRs (ps > 0.69). This suggests that the observed 
RT eects in noise are probably not due to a general slowing 
of decision speed (e.g., attentional lapses) across the board but 
rather, are restricted to accessing categorical representations. 

CP is also characterized by a slowing in RTs near the 
ambiguous midpoint of the continuum (Pisoni and Tash, 1974; 
Poeppel et al., 2004; Bidelman et al., 2013, 2014; Bidelman and 
Walker, 2017; Reetzke et al., 2018). Planned contrasts revealed 
this characteristic slowing in RTs for the clear [mean(Tk1,2,4,5) 
vs. Tk3; p = 0.0003] and 0 dB SNR (p = 0.0061) conditions. This 
categorical RT pattern was not observed at −5 dB SNR (p = 0.59). 
Collectively, our behavioral results suggest noise weakened the 
strength of CP in both the quality and speed of categorical 
decisions but only when speech was severely degraded. Perceptual 
access to categories was otherwise unaected by low-level noise 
(i.e., ≥0 dB SNR). 

Discrimination performance was uniformly high across vowel 
pairs and noise levels (mean = 83%; Supplementary Figure S2). 

4The practical significance of this location eect might be questionable given the 
shift is less than a half of token. Although speculative, the bias to report/u/under 
noise could also be related to the phonologically more complex representation 
for/u/(involving lip rounding, thereby a strong visual cue). Indeed, lip gesture plays 
a role in the categorical perception sounds (Mottonen and Watkins, 2009). 

FIGURE 3 | Behavioral speech categorization is robust to noise interference. (A) Perceptual psychometric functions for clear and degraded speech identification. 
Curves show an abrupt shift in perception when classifying speech indicative of discrete perception (i.e., CP). (B) Slopes and (C) locations of the perceptual 
boundary show speech categorization is robust even down to 0 dB SNR. (D) Speech classification speeds (RTs) show a categorical pattern for clear and 0 dB SNR 
speech; participants are slower at labeling ambiguous tokens (midpoint) relative to those with a clear phonetic label (endpoints) (Pisoni and Tash, 1974; Bidelman 
and Walker, 2017). A categorical RT effect is not observed for highly degraded speech (–5 dB SNR). errorbars = ± s.e.m. Figure adapted from Lewis and Bidelman 
(2020). 
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However, this eect might be expected for vowel stimuli since 
listeners can exploit acoustic in addition to phonetic (categorical) 
cues (Pisoni, 1973). Nevertheless, “peaked discrimination” was 
apparent in the highest noise condition, indicative of categorical 
processing (see Supplementary Material). 

Electrophysiological Data 
Grand average ERPs are shown across tokens and SNRs in 
Figures 4, 5 and Supplementary Figure S1. Predictably, noise 
delayed the ERP waves (Supplementary Figure S1), consistent 
with well-known masking eects and desynchronization in 
neural responses with acoustic interference (e.g., Alain et al., 
2012; Billings et al., 2013; Ponjavic-Conte et al., 2013; Alain 

et al., 2014; Bidelman and Howell, 2016). Amplitude and latency 
analysis of the N1 revealed it was strongly modulated by SNR 
(N1amp: F2,196 = 18.95, p < 0.0001; N1lat: F2,196 = 114.74, 
p < 0.0001) but not token (N1amp: F4,196 = 0.27, p = 0.89; N1lat: 
F4,196 = 0.78, p = 0.54), consistent with previous ERP studies 
which have observed masking (Alain et al., 2014; Bidelman and 
Howell, 2016) but not categorical coding eects at N1 (Toscano 
et al., 2010; Bidelman et al., 2013) (Supplementary Figure S1). 
Instead, SNR- and token-related modulations were apparent 
starting around the P2 wave (∼180 ms) that persisted for another 
200 ms. Visual inspection of the data indicated these modulations 
were most prominent at centro-parietal scalp locations. The 
enhanced positivity at these electrode sites following the auditory 

FIGURE 4 | ERPs as a function of speech token and noise (SNR). Representative electrodes at central (Cz), temporal (T7/8) and parietal (Pz) scalp sites. Stimulus 
and noise-related modulations are most prominent at P2 and following (180–320 ms). (A) Phonetic speech tokens (Tk1, Tk5) elicit stronger ERPs than (B) 
ambiguous sounds without a clear category (Tk3). Noise weakens and prolongs the neural encoding of speech. Inserts show topographic maps at 230 ms. Hot/cool 
colors = positive/negative voltage. 

FIGURE 5 | Categorical neural organization limits the degradative effects of noise on cortical speech processing. (A) Scalp auditory ERP waveforms (Cz electrode). 
Stronger responses are observed for phonetic exemplar vs. ambiguous speech tokens [i.e., mean(Tk1, Tk5) > Tk3; shaded regions] but this effect varies with SNR. 
(B) Mean ERP amplitude (180–320 ms window) is modulated by SNR and phonetic status. Categorical neural encoding (Tk1/5 > Tk3) is observed for all but the 
noisiest listening condition. errorbars = ± s.e.m. *p < 0.05; ** p < 0.01. 
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P2 might partly reflect dierences in P3b amplitude (Alain 
et al., 2001). To quantify these eects, we measured the mean 
amplitudes in the 180–320 ms time window at the vertex 
channel (Cz) (Figure 5). To assess the degree to which ERPs 
showed categorical-level coding, we then pooled tokens Tk1 
and Tk5 (those with clear phonetic identities) and compared 
these responses to the ambiguous Tk3 at the midpoint of 
the continuum (Bidelman, 2015; Bidelman and Walker, 2017). 
An ANOVA conducted on ERP amplitudes showed responses 
were strongly modulated by SNR (F2,70 = 8.54, p = 0.0005) 
and whether not the stimulus carried a strong phonetic label 
(Tk1/5 vs. Tk3: F1,70 = 19.11, p < 0.0001) (Figure 5B). The 
token x SNR interaction was not significant (F2,70 = 0.73, 
p = 0.49). However, planned contrasts by SNR revealed that 
neural activity dierentiated phonetically unambiguous vs. 
phonetically ambiguous speech at clear (p = 0.0170) and 0 dB 
(p = 0.0011) SNRs, but not at −5 dB (p = 0.0915). Across SNRs, 
ERPs to phonetic tokens were more resilient to noise (Tk1/5; 
linear contrast of SNR: t70 = −2.17, p = 0.07). In contrast, 
responses declined systematically for phonetically ambiguous 
speech sounds (Tk3; t70 = −2.91, p = 0.0098). These neural 
findings parallel our behavioral results and suggest the categorical 
(phonetic) representations of speech are more resistant to noise 
than those that do not carry a clear linguistic-phonetic identity. 

Brain-Behavior Relationships 
The eects of noise on categorical neural processing closely 
paralleled the perceptual data. Figure 6A shows the group mean 
performance on the behavioral identification task and group 
mean ERP amplitudes (180–320 ms window) to the phonetic 
speech tokens (Tk1/5). For ease of comparison, both the neural 
and behavioral measures were normalized for each participant 
(Alain et al., 2001), with 1.0 reflecting the largest displacement 
in ERP amplitude and psychometric slopes, respectively. The 
remarkably similar pattern between brain and behavioral data 
implies that perceptual identification performance is predicted 
by the underlying neural representations for speech, as reflected 
in the ERPs. Indeed, repeated measures correlational analyses 
revealed a strong association between behavioral responses and 
ERPs at the single-subject level when elicited by the phonetic 
(Tk1/5) (Figure 6B; rrm = 0.65, p < 0.00001, df = 29) but 
not ambiguous (Tk3) tokens (Figure 6C; rrm = 0.31, p = 0.09, 
df = 29). That is, more robust neural activity predicted 
steeper psychometric functions at the individual level. These 
findings suggest the neural processing of speech sounds carrying 
clear phonetic labels predicts more dichotomous categorical 
decisions at the behavioral level; whereas neural responses 
to ambiguous (less-categorical) speech tokens do not predict 
perceptual categorization. 

DISCUSSION 

By measuring neuroelectric brain activity during rapid 
classification of SIN, our results reveal three main findings: 
(1) speech identification is robust to acoustic interference, 
degrading only at very severe noise levels (i.e., negative SNRs); 

(2) the neural encoding of speech is enhanced for sounds 
carrying a clear phonetic identity compared to phonetically 
ambiguous tokens; and (3) categorical neural representations 
are more resistant to external noise than their categorically 
ambiguous counterparts. Our findings suggest the mere process 
of categorization—a fundamental operation to all perceptual 
systems (Goldstone and Hendrickson, 2010)—aids figure-ground 
aspects of speech perception by fortifying abstract categories 
from the acoustic signal and making the speech code more 
resistant to external noise interference. 

Behaviorally, we found listeners’ psychometric slopes were 
steeper when identifying clear compared to noise-degraded 
speech; identification functions became shallower only at the 
severe (negative) SNRs when noise levels exceeded that of 
speech. The resilience in perceptual identification suggests the 
strength of categorical representations is largely resistant to 
signal interference. Corroborating our modeling (Figure 1), 
we found CP was aected only when the input signal was 
highly impoverished. These data converge with previous studies 
(Giord et al., 2014; Helie, 2017; Bidelman et al., 2019) suggesting 
category-level representations, which are by definition more 
abstract than their acoustic-sensory counterparts, are largely 
impervious to surface degradations. Indeed, as demonstrated 
recently in cochlear implant listeners, the sensory input can 
be highly impoverished, sparse in spectrotemporal detail, and 
intrinsically noisy (i.e., delivered electrically to the cochlea) 
yet still oer robust speech categorization (Han et al., 2016). 
Collectively, our data suggest that both the mere construction 
of perceptual objects and the natural discrete binning process 
of CP help category members “pop out” amidst noise (e.g., 
Nothdurft, 1991; Perez-Gay et al., 2018) to maintain robust 
speech perception in noisy environments. 

Noise-related decrements in CP (Figure 3A) could reflect 
a weakening of internalized categories themselves (e.g., 
fuzzier match between signal and phonetic template) or 
alternatively, more general eects due to task complexity 
(e.g., increased cognitive load or listening eort; reduced 
vigilance). The behavioral data alone cannot tease apart these two 
interpretations. We can rule out the latter interpretation based 
on our RT data. The speed of listeners’ perceptual judgments 
to ambiguous speech tokens (Tk3) were nearly identical across 
conditions and invariant to noise (Figure 3D). In contrast, RT 
functions became more categorical (“inverted V” pattern) at 
more favorable SNRs due entirely to changes in RTs for category 
members (continuum endpoints). These findings suggest that 
categories represent local enhancements of processing within 
the normal acoustic space (e.g., Figure 1) which acts to sharpen 
categorical speech representations. That our data do not reflect 
gross changes in task vigilance is further supported by two 
additional findings: (i) lapses in performance did not vary 
across stimuli which suggests vigilance was maintained across 
conditions and (ii) ERPs predicted behavioral CP only for 
speech sounds that carried clear phonetic categories (Figure 6). 
Indeed, the dierential eect of noise on ERPs to category 
vs. non-category phonemes provides strong evidence that the 
observed eects reflect modulations in categorical processing. 
Parsimoniously, we interpret the eects of noise on CP as changes 
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FIGURE 6 | Brain-behavior associations in categorical speech perception. (A) Amplitudes of the auditory ERPs (Figure 5B) are overlaid with behavioral data 
(psychometric slopes; Figure 3B). Neural and behavioral measures are normalized for each participant (Alain et al., 2001), with 1.0 reflecting the largest 
displacement in ERP amplitude (mean: 180–320 ms; see Figure 5B) and psychometric slopes, respectively. (B,C) Repeated measures correlations (rmCorr) 
(Bakdash and Marusich, 2017) between behavioral CP and neural responses at the single-subject level for (B) phonetic (Tk1/5) and (C) phonetically ambiguous 
speech tokens (Tk3). The ordinate measure represents each listeners’ psychometric slope, computed from their entire identification curve (i.e., Figure 3B). 
Behavioral CP is predicted only by neural activity to phonetic tokens; larger ERP amplitudes elicited by Tk1/5 speech are associated with steeper, more dichotomous 
CP. Individual lines, single subject fits; thick black lines, overall rmCorr. ****p < 0.0001. 

in the relative sharpness of the auditory categorical boundary 
(Livingston et al., 1998; Bidelman et al., 2019). That is, under 
extreme noise, speech identification is blurred, and the normal 
warping of the perceptual space is partially linearized, resulting 
in more continuous speech identification. Stated dierently, at 
high enough levels, noise might challenge speech perception at 
SNRs where it eliminates dierences between clear endpoint and 
ambiguous tokens in the perceptual space. 

It should be noted aforementioned neural eects are probably 
not soley limited to neural generators in the superior temporal 
gyrus (i.e., auditory cortex) which generate the majority of the 
scalp auditory ERP (Picton et al., 1999). There is, for example 
substantial evidence that perception of ambiguous speech sounds 
is aided by frontal linguistic brain regions (e.g., inferior frontal 
gyrus, IFG) (Xie and Myers, 2015; Rogers and Davis, 2017). 
Similarly, we have shown the dierential engagement of IFG vs. 
auditory cortex during vowel categorization strongly depends 
on stimulus ambiguity and listeners’ auditory expertise; more 
ambiguity and less skilled perceivers more strongly recruit 
IFG (Bidelman and Walker, 2019). Thus, our scalp P2 data 
most likely reflect an auditory-region-based picture of speech-
in-noise categorization. We do not rule out the possibility 
that complementing information from other brain regions and 
likely dierent processing stages that participate over time 
also aid categorization, especially in noise (Du et al., 2014; 
Bidelman and Howell, 2016). 

On the basis of fMRI, Guenther et al. (2004) posited that 
the length of time auditory cortical cells remain active after 
stimulus presentation might be shorter for category prototypes 
than for other sounds. They further speculated “the brain 
may be reducing the processing time for category prototypes, 
rather than reducing the number of cells representing the 
category prototypes (Guenther et al., 2004, p. 55).” Some 
caution is warranted when interpreting these results given the 
sluggishness of the fMRI BOLD signal and inherent dierence 
in the nature of signal that is encoded by ERPs compared to 
fMRI. Still, our data disagree with Guenther et al. (2004)’s first 
assertion since ERPs showed larger (enhanced) activations to 
categorical prototypes within 200 ms. However, our RT data 
do concur with their second hypothesis. We found RTs were 
faster for prototypical speech (i.e., RTTk1/5 < RTTk3) providing 
confirmatory evidence that well-formed categories are processed 
more eÿciently by the brain. 

Our neuroimaging data revealed enhanced brain activity 
to phonetic (Tk1/5) relative to perceptually ambiguous (Tk3) 
speech tokens. This finding indicates categorical-level processing 
occurs as early as ∼150–200 ms after sound arrives at the 
ear (Bidelman et al., 2013; Alho et al., 2016; Toscano et al., 
2018). Importantly, these results cannot be explained in terms 
of mere dierences in exogenous stimulus properties. On the 
contrary, endpoint tokens of our continuum were actually the 
most distinct in terms of their acoustics. Yet, these endpoint 
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(category) stimuli elicited stronger neural activity than midpoint 
tokens (i.e., Tk1/5 > Tk3), which was not attributable to trivial 
dierences in SNR of the ERPs. These results are broadly 
consistent with previous ERP studies (Dehaene-Lambertz, 1997; 
Phillips et al., 2000; Bidelman et al., 2013, 2014; Altmann 
et al., 2014; Bidelman and Lee, 2015), fMRI data (Binder et al., 
2004; Kilian-Hütten et al., 2011), and near-field unit recordings 
(Steinschneider et al., 2003; Micheyl et al., 2005; Bar-Yosef and 
Nelken, 2007; Chang et al., 2010), which suggest auditory cortical 
responses code more than low-level acoustic features and reflect 
the early formation of auditory-perceptual objects and abstract 
sound categories.5 

ERP eects related to CP (Figure 5) were consistent with 
activity arising from the primary and associative auditory cortices 
along the Sylvian fissure (Alain et al., 2017; Bidelman and Walker, 
2019). The latency of these modulations was comparable to our 
previous electrophysiological studies on CP (Bidelman et al., 
2013; Bidelman and Alain, 2015b; Bidelman and Walker, 2017) 
and may reflect a modulation of the P2 wave. P2 is associated 
with speech discrimination (Alain et al., 2010; Ben-David et al., 
2011), sound object identification (Leung et al., 2013; Ross 
et al., 2013), and the earliest formation of categorical speech 
representations (Bidelman et al., 2013). That the P2 further 
reflects category access is also supported by the fact ERPs were 
enhanced to endpoint stimuli and converged with the ambiguous 
tokens only at the poorest SNR (Figure 5). This latter finding 
suggests that although endpoint tokens were more resilient to 
noise than boundary tokens overall, all stimuli probably became 
perceptually ambiguous in high levels of noise. 

Alternatively, P2 dierences could reflect increased exposure 
(or familiarity) eects (Ross and Tremblay, 2009; Ben-David 
et al., 2011; Tremblay et al., 2014). Under this interpretation, 
more ambiguous (i.e., less prototypical) sounds near the middle 
of our continuum would presumably be more unnatural and be 
less familiar to listeners, which could influence P2 amplitude. 
Indeed, we have shown listeners’ expertise, and hence familiarity 
and with sounds in a given domain modulate P2 in speech 
and music categorization tasks (Bidelman et al., 2014; Bidelman 
and Lee, 2015; Bidelman and Walker, 2019). In addition, 
relative P2 amplitude decrease could be associated with phonetic 
recalibration in the context of hearing the phonetic continuum in 
dierent SNRs that may or may not counteract against the noise-
induced masking eects. For example, Bidelman et al. (2013) 
showed that when an ambiguous vowel was classified as [u], P2 
amplitude was lower than when the same vowel was perceived 
as [a]. Thus, a phonetic (re)calibration process might play an 
important role here in the P2 amplitude dierences between end-
(Tk1/5) and mid-point (Tk 3) stimuli. 

Nevertheless, we found categorical neural enhancements also 
persisted ∼200 ms after P2, through what appeared to be a P3b-
like deflection. Whether this wave reflects a late modulation of P2 
or a true P3b response is unclear, the latter of which is typically 

5Though we did not establish our endpoint tokens are true global prototypes 
among the entire acoustic-phonetic space of listeners’ language (cf. perceptual 
magnet theory; Kuhl, 1991; Guenther and Gjaja, 1996; Iverson and Kuhl, 2000), 
we contend it is still useful to discuss Tk 1/5 tokens as being “prototypical” because 
they are the most prototypical among the stimulus set that participants heard. 

evoked in oddball-type paradigms. A similar “post-P2” wave 
(180–320 ms) has been observed during speech categorization 
tasks (Bidelman et al., 2013; Bidelman and Alain, 2015b), which 
varied with perceptual (rather) than acoustic classification. This 
response could represent integration or reconciliation of the 
input with a phonetic memory template (Bidelman and Alain, 
2015b) and/or attentional reorienting during stimulus evaluation 
(Knight et al., 1989). Similar responses in this time window 
have also been reported during concurrent sound segregation 
tasks requiring active perceptual judgments of the number 
and quality of auditory objects (Alain et al., 2001; Bidelman 
and Alain, 2015a; Alain et al., 2017). Our findings are also 
consistent with Toscano et al. (2010), who similarly suggested 
ERP modulations in the P2 (and P3) time window reflect 
access to category-level information about phonetic identity. 
This response might thus reflect controlled processes covering 
a widely distributed neural network including medial temporal 
lobe and superior temporal association cortices near parietal 
lobe (Alain et al., 2001; Dykstra et al., 2016). The posterior 
scalp distribution of this late deflection is consistent with this 
interpretation (Figure 4).6 Paralleling the dynamics in our neural 
recordings, studies have shown that perceptual awareness of 
target signals embedded in noise produces early focal responses 
between 100–200 ms circumscribed to auditory cortex and 
posterolateral superior temporal gyrus that is followed by a 
broad, P3b-like response (starting ∼300 ms) associated with 
perceived targets (Dykstra et al., 2016). It has been suggested 
this later response, like the one observed here, is necessary 
to perceive target SIN or under the demands of higher 
perceptual load (Lavie et al., 2014; Gutschalk and Dykstra, 2014; 
Dykstra et al., 2016). 

What might be the mechanism for categorical neural 
enhancements (i.e., ERPTk1/5 > ERPTk3) and their high 
flexibility in noise? In their experiments on categorical learning, 
Livingston et al. (1998) suggested that when “category-relevant 
dimensions are not as distinctive, that is, when the boundary 
is particularly ‘noisy,’ a mechanism for enhancing separation 
may be more readily engaged” (p. 742). Phoneme category 
selectivity is observed early (<150 ms) (Chang et al., 2010; 
Bidelman et al., 2013; Alho et al., 2016), particularly in left 
inferior frontal gyrus (pars opercularis) (Alho et al., 2016), 
but only under active task engagement (Alho et al., 2016; 
Bidelman and Walker, 2017). While some nascent form of 
categorical-like processing may occur pre-attentively (Joanisse 
et al., 2007; Krishnan et al., 2009; Chang et al., 2010; Bizley 
and Cohen, 2013), it is clear that attention enhances the brain’s 
ability to form categories (Recanzone et al., 1993; Bidelman 
et al., 2013; Alho et al., 2016; Bidelman and Walker, 2017). 
In animal models, perceptual learning leads to an increase in 
the size of cortical representation and sharpening or tuning of 
auditory neurons for actively attended (but not passively trained) 

6Though there is some evidence that categorization might recruit dierent neural 
pathways (e.g., temporal vs. frontal cortex) in skilled vs. unskilled listeners 
(Bidelman and Walker, 2019), it seems more likely that the speech sounds of our 
phonetic continuum recruited similar speech-sensitive neural mechanisms which 
were then modulated by the degree to which categorization mechanisms were 
successful in sorting them into discrete categories (i.e., changes in P2). 
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stimuli (Recanzone et al., 1993). We recently demonstrated visual 
cues from a talker’s face help sharpen sound categories to 
provide more robust speech identification in noisy environments 
(Bidelman et al., 2019). While multisensory integration is one 
mechanism that can hone internalized speech representations 
to facilitate CP, our data here suggest that goal-directed 
attention is another. 

The neural basis of CP likely depends on a strong audition-
sensory memory interface (DeWitt and Rauschecker, 2012; Bizley 
and Cohen, 2013; Chevillet et al., 2013; Jiang et al., 2018) 
rather than cognitive faculties, per se (attentional switching 
and IQ; Kong and Edwards, 2016). Moreover, the degree to 
which listeners show categorical vs. gradient perception might 
reflect the strength of phonological processing, which could 
have ramifications for understanding certain clinical disorders 
that impair sound-to-meaning mapping (e.g., dyslexia; Werker 
and Tees, 1987; Joanisse et al., 2000; Calcus et al., 2016). CP 
deficits might be more prominent in noise (Calcus et al., 2016). 
Thus, while relations between CP and language-based learning 
disorders remains equivocal (Noordenbos and Serniclaes, 2015; 
Hakvoort et al., 2016), we speculate that assessing speech 
categorization under the taxing demands of noise might oer a 
more sensitive marker of impairment (e.g., Calcus et al., 2016). 

More broadly, the noise-related eects observed here may 
account for other observations in the CP literature. For example, 
cross-language comparisons between native and non-native 
speakers’ CP demonstrate language-dependent enhancements in 
native listeners in the form of steeper behavioral identification 
functions (Iverson et al., 2003; Xu et al., 2006; Bidelman and 
Lee, 2015) and more dichotomous (categorical) neural responses 
to native speech sounds (Zhang et al., 2011; Bidelman and Lee, 
2015). Shallower categorical boundaries for non-native speakers 
can be parsimoniously described as changes in intrinsic noise, 
which mirror the eects of extrinsic noise in the current study. 
While the noise sources dier (exogenous vs. endogenous), 
both linearize the psychometric function and render speech 
identification more continuous. Similarly, the introduction of 
visual cues of a talker’s face can enhance speech categorization 
(Massaro and Cohen, 1983; Bidelman et al., 2019). Such eects 
have been described as a reduction in decision noise due to 
the mutual reinforcement of speech categories provided by 
concurrent phoneme-viseme information (Bidelman et al., 2019). 
Future studies are needed to directly compare the impact of 
intrinsic vs. extrinsic noise on categorical speech processing. Still, 

the present study provides a linking hypothesis to test whether 
deficits (Werker and Tees, 1987; Joanisse et al., 2000; Calcus et al., 
2016), experience-dependent plasticity (Xu et al., 2006; Bidelman 
and Lee, 2015), and eects of extrinsic acoustics on CP (present 
study) can be described via a common framework. 
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