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Categorizing sounds into meaningful groups helps listeners more efficiently process 

the auditory scene and is a foundational skill for speech perception and language 

development. Yet, how auditory categories develop in the brain through learning, 
particularly for non-speech sounds (e.g., music), is not well understood. Here, we 

asked musically naïve listeners to complete a brief (∼20 min) training session where 

they learned to identify sounds from a musical interval continuum (minor-major 3rds). 
We used multichannel EEG to track behaviorally relevant neuroplastic changes in 

the auditory event-related potentials (ERPs) pre- to post-training. To rule out mere 

exposure-induced changes, neural effects were evaluated against a control group 
of 14 non-musicians who did not undergo training. We also compared individual 
categorization performance with structural volumetrics of bilateral Heschl’s gyrus (HG) 
from MRI to evaluate neuroanatomical substrates of learning. Behavioral performance 

revealed steeper (i.e., more categorical) identification functions in the posttest that 
correlated with better training accuracy. At the neural level, improvement in learners’ 
behavioral identification was characterized by smaller P2 amplitudes at posttest, 
particularly over right hemisphere. Critically, learning-related changes in the ERPs were 

not observed in control listeners, ruling out mere exposure effects. Learners also showed 
smaller and thinner HG bilaterally, indicating superior categorization was associated with 

structural differences in primary auditory brain regions. Collectively, our data suggest 
successful auditory categorical learning of music sounds is characterized by short-term 

functional changes (i.e., greater post-training efficiency) in sensory coding processes 

superimposed on preexisting structural differences in bilateral auditory cortex. 

Keywords: auditory learning, EEG, auditory event related potentials (ERPs), morphometry, music perception, 
individual differences, categorical perception (CP) 
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INTRODUCTION 

Classifying continuously varying sounds into meaningful 
categories like phonemes or musical intervals enables more 
eÿcient processing of an auditory scene (Bidelman et al., 2020). 
Categorization of auditory stimuli is also a foundational skill 
for language development and is believed to arise from both 
learned and innate factors (Rosen and Howell, 1987; Livingston 
et al., 1998; Pérez-Gay Juárez et al., 2019; Mankel et al., 2020a,b). 
Auditory categories are further shaped by experiences such as 
speaking a second language (Lively et al., 1993; Escudero et al., 
2011; Perrachione et al., 2011) or musical training (Bidelman 
et al., 2014; Wu et al., 2015; Bidelman and Walker, 2019), 
suggesting flexibility in categorical perception with learning. 
While the behavioral aspects of category acquisition are well 
documented, the underlying neural mechanisms and the 
influence of individual dierences in shaping this process are 
poorly understood. 

Characterizing the neurobiology of category acquisition is 
typically confounded by prior language experience and the 
overlearned nature of speech (Liu and Holt, 2011). For example, 
perceptual interference from native-language categories can 
impede the learning of foreign speech sounds (Guion et al., 
2000; Flege and MacKay, 2004; Francis et al., 2008). Instead, 
non-speech stimuli (e.g., music) oer the ability to probe the 
neural mechanisms of nascent category learning without the 
potential confounds of language background or automaticity that 
stems from using speech materials (Guenther et al., 1999; Smits 
et al., 2006; Goudbeek et al., 2009; Liu and Holt, 2011; Yi and 
Chandrasekaran, 2016). In this regard, musical categories (i.e., 
intervals, chords) oer a fresh window into tabula rasa category 
acquisition. Indeed, non-musicians are unable to adequately 
categorize musical stimuli despite their exposure to music in daily 
life (Locke and Kellar, 1973; Siegel and Siegel, 1977; Howard 
et al., 1992; Klein and Zatorre, 2011; Bidelman and Walker, 
2019). While several studies have assessed category learning of 
musical intervals, they either used highly trained listeners (Burns 
and Ward, 1978) or focused on dierent training methods that 
maximize learning gains (Pavlik et al., 2013; Little et al., 2019). To 
our knowledge, very few studies have assessed the neural changes 
associated with category learning in music. 

Speech categorization is believed to emerge in the brain 
around N1 of the cortical event-related potentials (ERPs) and 
is fully manifested by P2 (i.e., ∼150–200 ms; Bidelman et al., 
2013b; Ross et al., 2013; Bidelman and Lee, 2015; Alho et al., 2016; 
Bidelman and Walker, 2017; Mankel et al., 2020a). Fewer studies 
have examined the electrophysiological underpinnings of music 
categorization, but evidence from musicians suggests a similar 
neural time course (Bidelman and Walker, 2019). Functional 
magnetic resonance imaging (fMRI) indicates that categorization 
training leads to a decrease in perceptual sensitivity for within-
category stimuli in auditory cortex while learning to discriminate 
categorical sounds shows the opposite eect—greater sensitivity 
to dierences between stimuli (Guenther et al., 2004). Still, 
the majority of studies on category learning have involved 
speech. Speech and music categorization may invoke separate 
yet complementary networks in the left and right hemispheres, 

respectively (Desai et al., 2008; Chang et al., 2010; Liebenthal 
et al., 2010; Klein and Zatorre, 2011, 2015; Alho et al., 2016). 
Although there are likely some parallels across domains (Liu and 
Holt, 2011), it remains unclear whether the neuroplastic changes 
from rapidly learning non-speech categories such as musical 
intervals parallel that of speech. 

More generally, auditory perceptual learning studies have 
reported changes in both early sensory-evoked (i.e., N1, P2) 
and late slow-wave ERP responses following training (Tremblay 
et al., 2001, 2009; Atienza et al., 2002; Tremblay and Kraus, 2002; 
Bosnyak et al., 2004; Alain et al., 2007, 2010; Tong et al., 2009; 
Ben-David et al., 2011; Carcagno and Plack, 2011; Wisniewski 
et al., 2020). A true biomarker of learning, however, should 
vary with learning performance (Tremblay et al., 2014). Because 
modulations in P2 amplitudes occur with mere passive stimulus 
exposure in the absence of training improvements, some posit P2 
reflects aspects of the task acquisition process rather than training 
or perceptual learning, per se (Ross and Tremblay, 2009; Ross 
et al., 2013; Tremblay et al., 2014). Given the equivocal role of 
P2 in relation to auditory learning, we aimed to re-adjudicate 
whether changes in P2 scale with individual behavioral outcomes 
as listeners rapidly acquire novel music categories. 

There is also significant variability in the acquisition of 
auditory categories (e.g., Howard et al., 1992; Golestani and 
Zatorre, 2009; Mankel et al., 2020b; Silva et al., 2020), especially 
for speech (Wong et al., 2007; Díaz et al., 2008; Mankel et al., 
2020a; Fuhrmeister and Myers, 2021; Kajiura et al., 2021). More 
successful learners show greater neural activation, particularly in 
auditory cortex (Wong et al., 2007; Díaz et al., 2008; Kajiura et al., 
2021). Such variability might be attributable to dierences in 
the creation or retrieval of long-term memories for prototypical 
vs. non-prototypical sounds during learning (Golestani and 
Zatorre, 2009). However, we have previously shown better 
categorizers show eÿciencies even in early sensory processing 
(∼150–200 ms), suggesting stimulus representations themselves 
are tuned at the individual level rather than later memory-related 
processes, per se (Mankel et al., 2020a). 

In addition to dierences in functional processing, individual 
categorization abilities may be partially driven by preexisting 
structural advantages within the brain (Ley et al., 2014; 
Fuhrmeister and Myers, 2021). Paralleling the left hemisphere 
bias for speech (Binder et al., 2004; Myers et al., 2009; Lee 
et al., 2012; Bouton et al., 2018), categorization of musical 
sounds is believed to involve a frontotemporal network in 
the right hemisphere, including key brain regions such as 
the primary auditory cortex (PAC), superior temporal gyrus 
(STG), and inferior frontal gyrus (IFG) (Klein and Zatorre, 
2011, 2015; Bidelman and Walker, 2019; Mankel et al., 2020a; 
Gertsovski and Ahissar, 2022). PAC/STG size (primarily right 
hemisphere) has also been associated with perception of 
relative pitch and musical transformation judgments (Foster 
and Zatorre, 2010), melodic interval perception (Li et al., 
2014), spectral processing (Schneider et al., 2005), and even 
musical aptitude (Schneider et al., 2002). To our knowledge, 
few studies have examined structural correlates of categorization 
at the individual level. In the domain of speech, faster, more 
successful learners of non-native phonemes exhibit larger left 
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Heschl’s gyrus (Golestani et al., 2007; Wong et al., 2008) and 
parietal lobe volumes (Golestani et al., 2002). Additionally, better 
and more consistent speech categorizers show increased right 
middle frontal gyrus surface area and reduced gyrification in 
bilateral temporal cortex (Fuhrmeister and Myers, 2021). We thus 
hypothesized that successful category learning for non-speech 
(i.e., musical) sounds would be predicted by neuroanatomical 
dierences (e.g., gray matter volume, cortical thickness), perhaps 
with a right PAC bias. 

The aim of this study was to examine the functional 
and structural neural correlates of auditory category learning 
following short-term identification training of music sound 
categories (i.e., intervals). Musical intervals allowed us to track 
sound-to-label learning without the potential lexical-semantic 
confounds inherent to using speech materials (Liu and Holt, 
2011). We measured learning-related changes in the cortical 
ERPs in musically naïve listeners against a no-contact control 
group to determine the specificity of neuroplastic eects. If 
rapid auditory category learning is related to enhanced sensory 
encoding of sound, we predicted changes in early brain activity 
manifesting at or before auditory object formation (i.e., prior 
to ∼250 ms; P2). If instead, short-term learning is associated 
with later cognitive processes related to decision and/or task 
strategy, we expected neural eects to emerge later in the ERP 
time course (e.g., late slow waves > 400–500 ms; Alain et al., 
2007). Additionally, we anticipated successful learners would 
recruit neural resources in right auditory cortices, mirroring the 
left hemispheric specialization supporting speech categorization 
(Liebenthal et al., 2005; Joanisse et al., 2007; Klein and Zatorre, 
2011; Bidelman and Walker, 2019). Our findings show that 
successful auditory category learning of musical intervals is 
characterized by both structural and functional dierences in 
auditory cortex. The presence of anatomical dierences along 
with ERP changes specific to learning suggest that the acquisition 
of auditory categories depend on a layering of preexisting and 
short-term plastic changes in the brain. 

MATERIALS AND METHODS 

Participants 
Our sample included N = 33 participants. Nineteen young adults 
(16 females) participated in the training task. An additional 
fourteen (7 females) served as a control group (data from Mankel 
et al., 2020a). All had normal hearing (thresholds ≤25 dB SPL, 
250–8,000 Hz), were right-handed (Oldfield, 1971), and had 
no history of neurological disorders. Participants completed 
questionnaires that assessed education level, socioeconomic 
status (SES) (Entwislea and Astone, 1994), language history (Li 
et al., 2006), and music experience. Groups were comparable 
in age (learners: µ = 24.9 ± 4.0 years, controls: µ = 24.9 ± 
1.7 years; p = 0.55), education (learners: µ = 18.5 ± 3.3 years, 
controls: µ = 17.3 ± 3.0 years; p = 0.32), and SES [rating 
scale of average parental education from 1 (some high school 
education) to 6 (Ph.D. or equivalent); learners: µ = 4.6 ± 1.3, 
controls: µ = 4.1 ± 0.6; p = 0.11]. All were fluent in English 
though six reported a native language other than English. We 

excluded tone language speakers as these languages improve 
musical pitch perception (Bidelman et al., 2013a). To ensure 
participants were naïve to the music-theoretic labels for pitch 
intervals, we required participants have no more than 3 years 
total of formal music training on any combination of instruments 
and none within the past 5 years. Critically, groups did not 
dier in prior music training (learners: µ = 1.1 ± 1.0 years, 
controls: µ = 0.6 ± 0.8 years; p = 0.14). All participants gave 
written informed consent according to protocol approved by 
the University of Memphis Institutional Review Board and were 
compensated monetarily for their time. 

Stimuli 
We used a five-step musical interval continuum to assess category 
learning of non-speech sounds (Bidelman and Walker, 2017; 
Mankel et al., 2020b). Individual notes of each dyad were 
constructed of complex tones consisting of 10 equal amplitude 
harmonics added in cosine phase. Each token was 100 ms in 
duration with a 10 ms rise/fall time to reduce spectral splatter. 
The bass note was fixed at a fundamental frequency (F0) of 
150 Hz while the upper note’s F0 ranged from 180 to 188 Hz 
corresponding to just intonation frequency ratios of 6:5 and 5:4, 
respectively (2 Hz spacing between adjacent tokens; Figure 1). 
The two notes of a given token were played simultaneously 
as a harmonic interval. Thus, the musical interval continuum 
spanned a minor (token 1) to major third (token 5). The minor-
major third continuum was selected because these intervals occur 
frequently in Western tonal music and connote typical valence 
of “sadness” and “happiness,” respectively, and are therefore 
easily described to participants unfamiliar with music-theoretic 
labels (Bidelman and Walker, 2017). Moreover, without training, 
non-musicians perceive musical intervals in a continuous mode 
indicating they are initially heard non-categorically (Locke and 
Kellar, 1973; Siegel and Siegel, 1977; Burns and Ward, 1978; 
Zatorre and Halpern, 1979; Howard et al., 1992; Bidelman and 
Walker, 2017, 2019). 

Procedure 
Participants were seated comfortably in an electroacoustically 
shielded booth. Stimuli were presented binaurally through ER-2 
insert earphones (Etymotic Research) at ∼81 dB SPL. Stimulus 
presentation was controlled by MATLAB routed through a 
TDT RP2 interface (Tucker Davis Technologies). Categorization 
was assessed in a pre- and post-test phase. Following brief 
task orientation (∼2–3 exemplars), one of the five tokens was 
randomly presented on each trial. Participants were instructed 
to label the sound they heard as either “minor” or “major” 
via keyboard button press as fast and accurately as possible. 
The interstimulus interval was 400–600 ms (jittered in 20 ms 
steps) following the listener’s response to avoid anticipation of 
the next trial, reduce rhythmic entrainment of EEG oscillations, 
and to help filter out overlapping activity from the previous 
trial (Luck, 2014). No feedback was provided during the pre- or 
post-test. To reduce fatigue, participants were oered a break 
after each phase. Pre- and post-test procedures were similar 
between both the learning and control groups; the learning 
group received additional identification training following the 

Frontiers in Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 897239 

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-897239 June 22, 2022 Time: 14:28 # 4

Mankel et al. Neural Correlates of Category Learning 

FIGURE 1 | Depiction of musical interval continuum. The bass note of all five interval tokens was fixed at an F0 of 150 Hz while the upper note’s F0 ranged from 180 
to 188 Hz corresponding to just intonation frequency ratios of 6:5 (minor third) and 5:4 (major third), respectively. The two notes of a given token were played 
simultaneously as a harmonic interval on a given trial. The individual notes of each dyad were constructed of complex tones consisting of 10 equal amplitude 
harmonics added in cosine phase (harmonics not shown). 

pretest (see “Training Paradigm”) while the control group 
participants were oered a break before continuing to the 
posttest. Total experimental session time (including the consent 
process, demographics questionnaires, EEG capping, pre- & post-
tests, training, etc.) was ∼2.5–3 h. 

Training Paradigm 
Participants in the learning group underwent a 20-min 
identification training between the pre- and post-test phases. 
Training consisted of 500 trials, 250 presentations each of 
the minor and major 3rd exemplars (i.e., tokens 1 and 5), 
spread evenly across 10 blocks.1 Feedback was provided to 
improve accuracy and eÿciency of auditory category learning 
(Yi and Chandrasekaran, 2016). The training procedure was 
conducted using E-Prime 2.0 (PST, Inc.). Listeners were 
successful in training if they reached ≥90% correct in at least 
one training block, the criterion equivalent to a trained musician’s 
performance on the same task (see Reetzke et al., 2018). 

EEG Acquisition and Preprocessing 
EEG data were recorded using a Synamps RT amplifier 
(Compumedics Neuroscan) from 64 sintered Ag/AgCl electrodes 
at 10–10 scalp locations and referenced online to a sensor placed 
∼1 cm posterior to Cz. Impedances were < 10 k. Recordings 
were digitized at a sampling rate of 500 Hz. Preprocessing 
was completed in BESA Research (v7.1; BESA GmbH). Blink 
artifacts were individually corrected for each participant using 
principal components analysis (Picton et al., 2000). Bad channels 
were interpolated on an individual basis according to the other 
electrodes using spherical spline interpolation (≤ 2 channels 

1Two pilot subjects received 6 and 15 blocks of training, respectively, before 
settling on the final 10 block training regimen. 

per participant). The data were suÿciently clean following 
these procedures and no further trial-wise artifact rejection was 
necessary. Continuous data were re-referenced oine to the 
common average reference, filtered from 1 to 30 Hz (4th-order 
Butterworth filter), baselined to the prestimulus interval, epoched 
from −200 to 800 ms, and averaged across trials to compute ERPs 
for each token per electrode. 

MRI Segmentation and Volumetrics 
A total of 12 out of 19 learning group participants returned 
on a separate day for structural MRI scanning. 3D T1-
weighted anatomical volumes were acquired on a Siemens 1.5T 
Symphony TIM scanner (tfl3d1 GR/IR sequence; TR = 2,000 ms, 
TE = 3.26 ms, inversion time = 900 ms, phase encoding 
steps = 341, flip angle = 8◦ , FOV = 256 × 256 acquisition 
matrix, 1.0 mm axial slices). Scanning was conducted at the 
Semmes Murphey Neurology Clinic (Memphis, TN). All MRI 
T1-weighted images were corrected for inhomogeneities using an 
N4 bias field correction algorithm and registered to MNI ICBM 
152 T1 weighted atlas with 1 × 1 × 1 mm3 isometric voxel size 
using aÿne transformation with 12 degrees of freedom (Dierks 
et al., 1999; Scott et al., 2014). The inverse transformation matrix 
was computed and applied to the brain mask in atlas space to 
create a mask in subject space (i.e., each subject’s original image 
space) for skull removal (Evans et al., 1993). An LPBA40 T1 
weighted atlas with 2 × 2 × 2 mm3 voxel size was then used 
to register the images and remove the cerebellum using the atlas 
cerebrum mask and following the same process performed in 
subject space as explained above (Shattuck et al., 2008). After skull 
removal and cerebrum extraction, an AAL3 T1 weighted atlas 
with 1 × 1 × 1 mm3 voxel size that provides parcellation of a 
large number of brain regions was used for extracting gray matter 
volume in certain regions of interest (ROIs) for each participant 
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(Rolls et al., 2020). All of the MRI pre-processing analyses were 
performed using in-house script written in Python2 using the 
ANTs library (Avants et al., 2009). 

Data Analysis 
Behavioral Data 
Identification curves were fit with a two-parameter sigmoid 
function P = 1/[1 + e−β1(x−β0)], where P describes the 
proportion of trials identified as major, x is the step number 
along the stimulus continuum, β0 is the locus of transition along 
the sigmoid (i.e., categorical boundary), and β1 is the slope of 
the logistic fit. Larger β1 values reflect steeper psychometric 
functions and therefore better musical interval categorization 
performance. Reaction times (RTs) were computed as the 
listeners’ median response latency for the ambiguous (i.e., token 
3) and prototypical tokens (i.e., mean[tokens 1 and 5]; see “ERP 
Data”), after excluding outliers outside 250–2,500 ms (Bidelman 
et al., 2013b; Bidelman and Walker, 2017; Mankel et al., 2020a). 
As an index of training success, accuracy was calculated in the 
learning group as the average percent correct identification across 
all training trials. 

Event-Related Potential Data 
For data reduction purposes, we analyzed a subset of electrodes 
from a frontocentral cluster (mean of F1, Fz, F2, FC1, FCz, 
FC2) where categorical eects in the auditory ERPs are most 
prominent at the scalp (Bidelman et al., 2013b, 2014; Bidelman 
and Lee, 2015; Bidelman and Walker, 2017). Peak latencies and 
amplitudes were quantified for P1 (40–80 ms), N1 (70–130 ms), 
and P2 (140–200 ms). The mean amplitude was also measured 
for slow wave activity between 300 and 500 ms, given prior work 
suggesting rapid auditory learning eects in this later time frame 
(Alain et al., 2007, 2010). 

We also quantified neural responses at T7 and T8 to assess 
hemispheric lateralization. Previous work has shown neural 
response dierences measured from these electrodes following 
rapid perceptual learning of concurrent speech vowels (Alain 
et al., 2007). For these analyses, we computed dierence 
waves derived between the ambiguous and prototypical tokens 
(ERP = mean[ERPToken1 & ERPToken5] − ERPToken3) for both 
the pre- and post-test (see Mankel et al., 2020a). Larger ERP 
values indicate stronger dierentiation of category ambiguous 
from category prototype sounds and thus reflect the degree of 
“neural categorization” in each hemisphere. 

MRI Data 
Each participant’s MRI images were registered to the AAL3 atlas, 
ROI masks were transformed to subject space, and ROI volumes 
were then calculated (cm3) (see Supplementary Figures 3, 4 
for individual subject images and ROI localization). Atlas 
registration was confirmed using SPM12 toolbox in MATLAB 
(Penny et al., 2011). Cortical thickness was examined using a 
dieomorphic registration based cortical thickness (DiReCT) 
measure (Das et al., 2009). We used the OASIS atlas (Marcus 
et al., 2009) for the computation of cortical thickness because 

2http://www.python.org 

it provides four brain segmentation priors for parcellating 
cerebrospinal fluid (CSF), cortical gray matter, white matter, and 
deep gray matter. 3D cortical thickness maps for each subject 
were computed based on these priors. Thickness maps were then 
multiplied with the AAL3 atlas (converted to subject space) to 
compute the cortical thickness of each brain region mapped to 
their corresponding labels. Finally, the mean, standard deviation, 
and range of the cortical thickness measurements along with the 
surface area and volume of the cortical regions were computed 
for each ROI. Volumetrics were normalized to each participant’s 
total intracranial brain volume to control for artificial dierences 
across individuals (e.g., head size; Whitwell et al., 2001). To test 
for hemispheric dierences specific to auditory neuroanatomic 
measures, we restricted ROI analysis to bilateral Heschl’s gyrus 
(Rolls et al., 2021). 

Statistical Analysis 
Unless otherwise noted, ERPs were analyzed using generalized 
linear mixed-eects (GLME) regression models in SAS (Proc 
GLIMMIX; v9.4, SAS Institute, Inc.) with subjects as a random 
factor and fixed eects of training phase (two levels: pretest 
vs. posttest), stimulus token (two levels: tokens 1 and 5 vs. 3) 
and behavioral performance [identification slopes or training 
accuracy (learning group only); continuous measures]. We also 
included the interaction of phase and behavioral performance 
to investigate whether brain-behavior correspondences change 
after training. The behavioral GLME models included RTs 
or identification slopes as dependent variables, main eects 
and interactions between phase and group (two levels: control 
vs. learning), and an additional main eect of token in the 
RT model (slopes are token-independent). For the MRI data, 
the GLME models incorporated main eects and interactions 
between neuroanatomical measurements (i.e., cortical thickness 
or normalized gray matter volume) and phase to determine 
whether brain structure predicts training gains in categorization 
performance (i.e., dependent variable: identification slopes). 
We used a backward selection procedure to remove non-
significant variables and report final model results throughout. 
Post hoc multiple comparisons were corrected using Tukey 
adjustments. Identification function slopes (β1) were square root 
transformed to improve normality and homogeneity of variance. 
Demographic variables were analyzed using Wilcoxon-Mann-
Whitney and Fischer’s exact tests due to non-normality. An 
a priori significance level was set at α = 0.05. Conditional 
studentized residuals (| SR| > 2), Cook’s D (> 4/N), and 
covariance ratios (< 1) were used to identify and exclude 
influential outliers. 

RESULTS 

Training Results 
Behavioral training outcomes are plotted in Figure 2. On 
average, participants in the learning group improved in accuracy 
[Figure 2A; F(9, 158) = 2.05, p = 0.038] and exhibited faster 
RTs [Figure 2B; F(9, 158) = 2.74, p = 0.005] over the course 
of training. Training was highly eective; most individuals 
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FIGURE 2 | Behavioral categorization improves following rapid auditory training. Brief major/minor categorization training yields an increase in accuracy (A) and 
decrease in reaction time (B) across blocks. Pretest and posttest psychometric identification functions for the learning group (C) show stronger categorization for 
musical intervals after training (excluding data from n = 5 non-learners); performance was identical pre- to post-test for control listeners (D). Slopes were square-root 
transformed for statistical analysis (E). Error bars/shading = ± 1 SE. *p < 0.05. 

averaged > 80–90% identification accuracy across the 10 blocks 
(i.e., the approximate performance of a musician on the same 
task; data not shown). N = 5 “non-learners” had training 
accuracies that did not reach the 90% criterion threshold in 
a block (see “Training Paradigm”) with averages remaining 
near chance performance (i.e., average training accuracies of 
46, 46.8, 50.6, 57.8, and 68%, respectively). Consequently, these 
individuals were removed for all subsequent analysis. Post hoc 
analyses revealed RTs became faster following the third training 
block (all p’s < 0.05). Similarly, listeners’ identification was more 
accurate starting at the 9th training block compared to the first 
block [block 9 vs. 1: t(158) = 3.44, p = 0.025; block 10 vs. 1: 
t(158) = 3.40, p = 0.028]. 

Behavioral Categorization Following 
Training 
We then assessed training-related improvements in 
categorization via listeners’ identification of the musical 

interval continuum. We found a group × phase interaction 
for identification slopes [F(1, 26) = 4.93, p = 0.035]. 
Importantly, control and learning groups did not dier at 
pretest (Figures 2C–E; t26 = −0.72, p = 0.48), suggesting 
common baseline categorization. Critically, post hoc analyses 
revealed that identification slopes were steeper at posttest for 
successful learners (Figure 2E; t26 = 4.42, p < 0.001), whereas 
performance remained static in the control group (t26 = 1.28, 
p = 0.21). Comparison of the probability density functions 
between groups of the pre- to post-test dierence in slopes 
also suggested greater improvement in slopes for the learning 
group compared to the control group (see 1.1 Learning-Related 
Behavioral Categorization Changes in Supplementary Material 
and Supplementary Figure 1). For learners, in addition to 
training gains [main eect of phase: F(1, 13) = 11.65, p = 0.005], 
achieving better accuracy during training was associated 
with steeper identification functions overall [F(1, 13) = 8.58, 
p = 0.012]. RTs only showed an eect of phase [F(1, 81) = 10.72, 
p = 0.002; group × phase: F(1, 81) = 0.03, p = 0.856], but a trend 
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for a group × phase interaction was also observed after removal 
of a single influential outlier from the learning group [i.e., in 
addition to the prior removal of non-learners; see “Training 
Results”; F(1, 78) = 3.98, p = 0.050; phase: F(1, 78) = 9.31, 
p = 0.003]. Whereas the control group achieved faster RTs at 
posttest [t(78) = −3.64, p < 0.001], RTs remained constant in the 
learning group [t(78) = −0.73, p = 0.466]. 

Electrophysiological Results 
ERP waveforms are shown per group and experimental phase in 
Figure 3 (pooling all tokens). For the learning group, we found 
a training accuracy × phase interaction in P2 [F(1, 39) = 5.77, 
p = 0.021] and P1 amplitudes [F(1, 39) = 11.29, p = 0.002]; 
better performance during training was associated with decreased 
amplitudes in the posttest but not the pretest [P2: t(39) = −2.71, 
p = 0.010; P1: t(39) = −2.72, p = 0.010]. All other ERP 
comparisons with training accuracy were not significant. 

In learners, we found an identification slopes × phase 
interaction for P2 amplitudes [F(1, 38) = 4.16, p = 0.048]; 
steeper (i.e., more categorical) posttest identification slopes 
were associated with a decrease in neural activity after training 
(Figure 4A). Main eects of slope [F(1, 39) = 8.46, p = 0.006] and 
phase [F(1, 39) = 6.26, p = 0.017] were also found for the slow 
wave (300–500 ms). Critically, these brain-behavior relationships 
were specific to learners and were not observed in the control 
group (Figure 4B; all p-values > 0.05). 

Hemispheric asymmetries were assessed via dierence 
waveforms computed as the dierence in voltage between brain 
responses to tokens 1 and 5 vs. the midpoint token 3 [i.e., mean 
(ERPToken1 & ERPToken5) − ERPToken3] (Bidelman and Walker, 
2019). Greater dierence wave values indicate stronger neural 
dierentiation of category prototype from category ambiguous 
sounds, respectively, and thus index the degree of “neural 
categorization” in each hemisphere. This analysis focused on 
electrodes T7 and T8 located over the left and right temporal 
lobes, respectively. We used a running paired t-test to evaluate 
training eects in a point-by-point manner across the ERP time 
courses (BESA Statistics, v2; Figure 5). This initial, data-driven 
method was applied in an exploratory manner (i.e., uncorrected) 
to identify time windows when category encoding eects were 
strongest after training. In learners, category dierentiation was 
modulated by learning 112–356 ms after stimulus onset over 
electrode T8 (right hemisphere; Figure 5B). Guided by these 
results, we then extracted average amplitudes within this time 
window for both the pre- and post-test and ran a more stringent 
(i.e., corrected for multiple comparisons) three-way mixed model 
ANOVA (group, identification slopes, phase). The group × slope 
interaction was significant for electrode T8 [F(1, 23) = 7.86, 
p = 0.010] after removing two influential outliers (one from 
each group). Post hoc analyses revealed that for learners, steeper 
identification slopes predicted larger (i.e., more categorical) 
responses over the right hemisphere [t(23) = 2.49, p = 0.021]. 
This brain-behavior relationship was not observed in controls 
nor over the left hemisphere (p-values > 0.05; Figure 5C). 
Complementary analyses of global field power similarly revealed 
a greater pre- to post-test change in neural activation over 
the right hemisphere temporal electrodes compared to the left 

hemisphere (Supplementary Figure 2). These data suggest a 
right hemisphere bias in neural mechanisms supporting category 
learning of musical intervals. 

Exploratory Neuroanatomical Results 
Having established that musical interval learning leads to 
functional lateralization, we were interested in evaluating 
whether preexisting structural asymmetries (i.e., gray matter 
volume, cortical thickness) of Heschl’s gyrus (HG) were also 
associated with successful category learning. Gray matter volume 
was normalized according to each individual’s total brain volume 
for ease of inter-subject comparisons (raw data mean±SD 
[range] cm3—left: 0.80±0.05 [0.73–0.86]; right: 0.93±0.08 [0.84– 
1.06]; total brain volume: 1143.80±81.81 [1030.53–1302.40]). 
Volumetric analyses revealed that normalized gray matter 
volumes were larger on average in the right compared to 
left HG [Figure 6, center; t(11) = 12.36, p < 0.001]. The 
interaction of phase and structural measures were not significant 
for identification slopes. However, phase was kept in the models 
to isolate the relationship between structural HG measures and 
behavior after factoring out training eects. Smaller normalized 
gray matter volumes in right HG were associated with stronger 
categorization overall [F(1, 11) = 5.80, p = 0.035, after accounting 
for eects of phase; Figure 6A]. Meanwhile, thinner cortical 
thickness of left HG corresponded to better identification slopes 
[Figure 6B; F(1, 11) = 15.07, p = 0.003, after accounting for 
eects of phase]. Cortical thicknesses and normalized gray matter 
volumes did not correlate with each other for either right or left 
HG suggesting these volumetrics provided independent measures 
of the anatomy (all p-values > 0.05). Taken together, these results 
indicate that preexisting dierences in bilateral HG structure 
predict individual categorization performance. 

DISCUSSION 

By measuring multichannel EEGs and brain volumetrics during 
a short term auditory category learning task, our data reveal 
four primary findings: (i) rapid label learning of musical 
intervals emerges very early in the brain (∼150–200 ms, P2 
wave), (ii) these ERP signatures decrease with more successful 
learning suggesting more eÿcient neural processing (i.e., 
reduced amplitudes) after training; (iii) neuroplastic changes in 
categorizing musical sounds are stronger in right hemisphere, 
and (iv) smaller and thinner auditory cortical regions predict 
better categorization performance. Successful category learning 
is therefore, characterized by increased functional eÿciency of 
sensory processing, whereas better categorization performance 
(but not category learning) is associated with preexisting 
structural advantages within auditory cortex. 

Functional Correlates of Auditory 
Category Learning 
Our data suggest musical interval category acquisition is 
associated with changes in ERP P2. The functional significance 
of P2 is still poorly understood (Crowley and Colrain, 2004). 
Experience-dependent neuroplasticity in P2 has been interpreted 
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FIGURE 3 | Grand average ERP waveforms collapsed across all tokens from the frontocentral electrode cluster (mean F1, Fz, F2, FC1, FCz, FC2). The learning 
group (left) underwent brief identification training whereas the control group (right) did not. Shading = ± 1 SE. 

FIGURE 4 | Neural amplitudes scale with behavioral outcomes in the learning group (A) but not the control group (B). Better posttest categorization (i.e., steeper 
identification slopes) is associated with a decrease in P2 amplitudes. Identification slopes were square-root transformed for statistical analysis. Data points indicate 
individual subjects (collapsed across tokens 1 & 5 and 3). Arrow/value mark an outlier (which did not alter results). 

as reflecting enhanced perceptual encoding and/or auditory 
object representations (Garcia-Larrea et al., 1992; Shahin et al., 
2003; Ross et al., 2013; Bidelman et al., 2014; Bidelman 
and Lee, 2015), improvements in the task acquisition process 
(Tremblay et al., 2014), reallocation of attentional resources 
(Alain et al., 2007), increased inhibition of task-irrelevant signals 
(Sheehan et al., 2005; Seppanen et al., 2012), or mere stimulus 

exposure (Sheehan et al., 2005; Ross et al., 2013). Here, we 
demonstrate early ERP waves including P1 (∼40–80 ms) as well 
as P2 (∼150–200 ms) closely scale with behavioral learning. 
While our experimental design does not permit a deeper probe 
into the listening strategies employed by the participants that 
resulted in improved categorization performance, our results 
demonstrate that the process of learning to map musical sounds 
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FIGURE 5 | Neuroplastic changes following auditory categorical learning of music intervals are biased toward right hemisphere. Only data for the learning group is 
shown. (A) Topographic statistical map at t = 336 ms (dotted gray line in B,C) where pre- to post-test changes in categorical coding is maximal over the right 
hemisphere. Electrodes T7 and T8 are bordered by black squares. (B,C) Difference wave amplitudes [diff. amp.; i.e., mean(token 1 & 5) − token 3] indexing 
categorical neural coding (see text). An increase in neural categorization after training occurs over right (B; electrode T8) but not left hemisphere (C; electrode T7). 
The red shaded region in B indicates a significant effect of phase in the exploratory t-test (i.e., uncorrected). Average amplitudes were extracted from this time 
window (112–356 ms) for both hemispheres and subjected to more stringent statistical analyses (see text). 

FIGURE 6 | Neuroanatomical measures in Heschl’s gyrus (HG) predict behavioral categorization performance in the learning group (Center). MRI image from a 
representative subject with left and right HG shown in blue and white, respectively. See Supplementary Figures 3, 4 for individual MRI images of all subjects. (A) In 
left HG, larger cortical thickness is associated with poorer categorization. (B) Similarly, larger normalized gray matter volumes in right HG (normalized to each 
individuals’ total brain volume) were associated with poorer behavioral categorization. Data points indicate individual subject identification slopes (values are 
square-root transformed). a.u. = arbitrary units. Shading = 95% CI. 

(i.e., intervals) to categorical labels is associated with changes 
in sensory encoding responses in the brain. Moreover, these 
neuroplastic eects are surprisingly fast, occurring rapidly within 
only 20 min of training. Our findings parallel visual category 
learning where changes in the visual-evoked N1 and late positive 
component signal successful learning (Pérez-Gay Juárez et al., 
2019). Our results also align with previous studies using various 
auditory training tasks including speech (Tremblay et al., 2001, 
2009; Tremblay and Kraus, 2002; Alain et al., 2007, 2010; Ben-
David et al., 2011) and non-speech sounds (Atienza et al., 2002; 

Bosnyak et al., 2004; Tong et al., 2009; Wisniewski et al., 2020) 
suggesting P2 indexes auditory experience that reflects learning 
success and is not simply a product of the task acquisition 
process (cf. Tremblay et al., 2014) or repeated stimulus exposure 
(Sheehan et al., 2005; Ross and Tremblay, 2009; Ross et al., 2013). 
The lack of clear neural eects in control listeners further rules 
out exposure or repetition eect accounts of our data. 

In this study, successful learning (i.e., both training accuracy 
and identification function slopes) was characterized by a 
reduction in ERP amplitudes after training. The specific direction 
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of P2 modulations varies across experiments with some reporting 
an increase in evoked responses with learning (Tremblay et al., 
2001; Atienza et al., 2002; Bosnyak et al., 2004; Sheehan et al., 
2005; Tong et al., 2009; Carcagno and Plack, 2011; Ross et al., 
2013; Wisniewski et al., 2020) and others a decrease (Zhang et al., 
2005; Alain et al., 2010; Ben-David et al., 2011). As suggested by 
Alain et al. (2010), such discrepancies could be related to the task 
(e.g., active task vs. passive recording), the stimuli (e.g., speech 
vs. non-speech), the rate of learning among the participants, or 
even the rigor of training paradigm. Studies reporting enhanced 
P2 often included multiple days of training or recorded ERPs 
during passive listening (Tremblay et al., 2001; Atienza et al., 
2002; Bosnyak et al., 2004; Ross et al., 2013; Seppanen et al., 
2013; Wisniewski et al., 2020). Long-term auditory experiences 
(e.g., music training, tone language expertise) have also been 
associated with enhanced P2 during active sound categorization 
(Bidelman et al., 2014; Bidelman and Alain, 2015; Bidelman and 
Lee, 2015) as well as learning (Shahin et al., 2003; Seppanen 
et al., 2012, 2013). The ERP decreases we find in successful 
learners are highly consistent with single-session, rapid learning 
experiments demonstrating greater eÿciency of sensory-evoked 
neural responses during active task engagement (Guenther et al., 
2004; Alain et al., 2010; Ben-David et al., 2011; Sohoglu and Davis, 
2016; Pérez-Gay Juárez et al., 2019). Consequently, our results 
reinforce notions that the P2 is a biomarker of learning to classify 
auditory stimuli and map sounds to labels. 

On the contrary, decreased neural activity might reflect 
other aspects of the task, including arousal and/or fatigue 
(Näätänen and Picton, 1987; Crowley and Colrain, 2004). 
However, decreased neural activity from these factors would have 
been expected in both groups due to the similar task constraints 
on all participants. If better learners simply sustain arousal 
more eectively through posttest, we would have also expected 
faster RTs. Rather, our data suggest decreases in activation 
meaningfully reflect music category learning (Gertsovski and 
Ahissar, 2022), paralleling findings with speech (Guenther et al., 
2004). Alternatively, given modulations in both P2 and slow 
wave activity, a separate but overlapping processing negativity 
within this timeframe cannot be ruled out. Negative processing 
components have been associated with early auditory selection 
and attention (Hillyard and Kutas, 1983; Näätänen and Picton, 
1987; Crowley and Colrain, 2004) and may therefore be another 
target for learning processes. 

Hemispheric Lateralization and Music 
Categorization 
Our findings show that acquiring novel categories for musical 
intervals predominantly recruits neural resources from the right 
auditory cortex, complementing the left hemisphere bias reported 
for speech categorization (Zatorre et al., 1992; Golestani and 
Zatorre, 2004; Liebenthal et al., 2005, 2010, 2014; Desai et al., 
2008; Myers et al., 2009; Chang et al., 2010; Alho et al., 
2016). Specifically, we observed enhanced neural categorization 
over the right hemisphere in more successful learners. These 
findings support long-standing notions about lateralization for 
speech vs. music categorization in the brain (Zatorre et al., 1992; 

Desai et al., 2008; Chang et al., 2010; Liebenthal et al., 2010; Klein 
and Zatorre, 2011, 2015; Alho et al., 2016; Bouton et al., 2018; 
Bidelman and Walker, 2019; Mankel et al., 2020a). Our data 
parallel a study by Gertsovski and Ahissar (2022) where learning 
to categorize relative pitches was associated with a decrease of 
neural activation in right PAC as well as bilateral STG and 
left posterior parietal cortex. Superior music categorization in 
both trained musicians (Klein and Zatorre, 2011, 2015; Bidelman 
and Walker, 2019) as well as musically adept non-musicians 
(Mankel et al., 2020a) has been associated with right temporal 
lobe functions. We thus provide new evidence that even brief, 
20-min identification training is suÿcient to induce neural 
reorganization in the right hemisphere circuity that subserves 
auditory sensory coding and classification of musical stimuli. 

Neuroanatomical Correlates of Auditory 
Category Learning 
Our MRI results indicate that individual variation in structural 
measures (gray matter volume, cortical thickness) within Heschl’s 
gyrus also predict behavioral categorization performance beyond 
mere training eects. Because MRIs were available for only 
63% (12/19) of individuals from the learning group (and none 
in the control group), the findings reported here should be 
considered exploratory. Additional research is needed to verify 
the anatomical trends we see in our data. Brain structure 
is influenced by genetic, epigenetic, and experiential factors 
(Zatorre et al., 2012). Thus, it is often diÿcult to know 
whether anatomical dierences are innate or experience-driven, 
but structural measures are presumed to be more stable and 
less plastic than functional responses (e.g., ERPs) (Golestani, 
2012). Anatomical variability in auditory cortex has been 
related to learning rate and attainment for foreign speech 
sounds (Golestani et al., 2007), linguistic pitch patterns (Wong 
et al., 2008), and melody discrimination (Foster and Zatorre, 
2010) as well as native speech categorization (Fuhrmeister and 
Myers, 2021). Consistent with this prior work on speech, our 
findings suggest that individual dierences in music category 
perception and functional plasticity are influenced by anatomical 
predispositions within auditory cortex—that is, a layering of both 
nature and nurture. 

It is often assumed larger morphology within a particular 
brain area yields better computational eÿciency (i.e., “bigger 
is better”; Kanai and Rees, 2011). For example, faster, more 
successful learners of non-native speech sounds show more 
voluminous primary auditory cortex and adjacent white matter in 
left hemisphere (Golestani et al., 2002, 2007; Wong et al., 2008). 
Relatedly, expert listeners (i.e., musicians) show increased gray 
matter volumes and cortical thickness in PAC (Schneider et al., 
2002; Gaser and Schlaug, 2003; Bermudez et al., 2009; Seither-
Preisler et al., 2014; Wengenroth et al., 2014; de Manzano and 
Ullen, 2018). Instead, our data show the opposite pattern with 
regard to non-speech (i.e., musical interval) category learning. 
To our knowledge, only one study has shown correspondence 
between decreased gyrification in temporal regions and improved 
consistency in speech categorization behaviors (Fuhrmeister and 
Myers, 2021). Similarly, smaller gray matter volume in STG has 
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been linked to improvements in speech and cognitive training 
(Takeuchi et al., 2011a,b; Maruyama et al., 2018). Additionally, 
the trend for reduced cortical thickness in better categorizers is 
consistent with previous research showing individual dierences 
in regions of reduced cortical thickness along HG (Zoellner 
et al., 2019). Thus, it seems “less is more” with respect to the 
expanse of auditory anatomy and certain aspects of listening 
performance. However, future research is needed to clarify 
the relationships between macroscopic gray and white matter 
volumes measured by MRI, neuronal microstructures, and their 
behavioral correlates. 

Limitations 
While the relationship between neural responses and individual 
learning performance suggests a role for P2 as an index 
of learning, it remains possible that some of the neural 
dierences observed between the two groups is confounded 
by the experimental design. Relative to the control group, our 
learning group received approximately 20 additional minutes 
of exposure to the musical intervals during training. Increased 
familiarity with the musical intervals may have led to decreased 
ERP amplitudes in the learning group. Previous research has 
suggested that exposure to auditory stimuli is suÿcient to 
induce changes in neural responses (Sheehan et al., 2005; 
Ross and Tremblay, 2009; Ross et al., 2013). Additionally, 
procedural learning is confounded with perceptual learning 
in this study design (Maddox and Ashby, 2004). However, 
we have argued above that the relationship between ERP 
responses and individual learning performance (i.e., accuracy 
and identification slopes in the learning group) suggests these 
neural pre- to post-test neural changes are more than simply 
exposure (see “Functional Correlates of Auditory Category 
Learning”). These eects also occur in waves that localize to 
auditory-perceptual areas and well before motor responses, 
more indicative of rapid perceptual learning due to training in 
our study. Future research employing an active control group, 
where listeners hear the same number of musical intervals but 
train on an unrelated task, or a passive control group with 
identical stimulus exposure as the learning group would be 
particularly useful in ruling out these potential confounds. Other 
modifications to the study design, such as additional training 
time rather than a rapid learning paradigm, might lead to 
more exaggerated behavioral dierences between the learning 
and control groups (Figure 2E) and/or dierent brain-behavior 
associations altogether (e.g., enhanced neural responses; see 
“Functional Correlates of Auditory Category Learning”). 

Although the use of musical interval categories was intentional 
to avoid possible confounds of language background on (novel) 
speech learning, it remains an open question whether our results 
complement category learning in other speech and non-speech 
domains. Our results suggest promising parallels with speech 
categorization and learning (Alain et al., 2010; Liebenthal et al., 
2010; Bidelman et al., 2013a; Ross et al., 2013), but further 
research is needed to determine the domain-specificity and 
generality of these neural processes. Additionally, the likelihood 
of distributed sources outside of auditory cortex contributing to 
the generation of the P2 response (Crowley and Colrain, 2004; 
Ross and Tremblay, 2009) makes it diÿcult to directly relate 

individual dierences in ERPs to our PAC neuroanatomical 
measures. The relationships between behavioral performance 
and both functional and structural measures suggest bilateral 
auditory cortices play a role in category learning. However, future 
analyses could utilize source localization techniques to more 
specifically determine where changes occur in the brains that 
predict successful category learning outcomes. 

CONCLUSION 

We demonstrate that rapid auditory category learning of musical 
interval sounds is characterized by increased eÿciency in 
sensory processing in bilateral, though predominantly right, 
auditory cortex. The relationship between better behavioral 
gains in identification performance and the ERPs corroborate 
P2 as an index of auditory experience and a biomarker 
for successful perceptual learning. The right hemisphere 
dominance supporting music category learning complements 
left hemisphere networks reported for speech categorization. 
These short-term functional changes can be superimposed on 
preexisting structural dierences in bilateral auditory areas to 
impact individual categorization performance. 
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Supplementary Material 

1 Supplementary analyses 

1.1 Learning-related behavioral categorization changes 

To determine whether pre- to post-test changes in identification slopes are different between the 

learning and control groups, we conducted a t-test on the probability density functions depicting the 

posttest – pretest slopes difference for each group (see Supplementary Figure 1). The distributions 

of the probability density differences indicate that the change in identification slopes differs between 

groups [t(27) = 2.43, p = 0.022]. Consistent with the analyses reported in the main text (see 

“Behavioral Categorization Following Training”), the learning group achieved greater pre- to post-

test identification slopes improvement than the control group. 

2 Supplementary Figures 

Supplementary Figure 1. Probability density functions comparing the (square-root transformed) 

posttest – pretest differences in identification slopes across groups suggest the improvement in 

categorization is greater for the learning group compared to the control group. 
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2 

Supplementary Figure 2. Global field power indicates a greater pre- to post-test difference in neural 

activity over right hemisphere temporal electrodes (RH; B) compared to the left hemisphere (LH; A). 

These results support the conclusions reported in the main text using single-channel difference 

waveforms (i.e., T7 & T8; see “Electrophysiological Results” in main text); specifically, neuroplastic 

changes following musical interval category learning are biased towards the right hemisphere. Data 

shown for learning group only. (Center) Global field power was computed as the average activation 

across six electrodes over left and right temporal sites separately (i.e., LH: FC5, FT7, C5, T7, CP5, & 

TP7; RH: FC6, FT8, C6, T8, CP6, & TP8). 



3 

Supplementary Figure 3. Surface reconstruction maps of the MRI brain images depicting left and 

right Heschl’s gyrus measured for each participant (blue and red, respectively). Each of the MRI 

images were registered to the AAL3 atlas using affine transformation, and the Heschl’s gyrus mask 

was transformed to subject space for the segmentation. The surface reconstruction with the overlay 

was created in MRIcroGL 1.0 (University of South Carolina; www.nitrc.org/projects/mricrogl). 

http://www.nitrc.org/projects/mricrogl
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Supplementary Figure 4. Transverse slices through the supratemporal plane, rotated at an angle 

parallel with the Sylvian fissure (upper left), enable visualization of left and right Heschl’s gyrus for 

each participant (blue and red, respectively). Image analysis was done using SPM12 in MATLAB 

(SPM; The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 

London, UK). 
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