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Speech perception in noisy environments depends on complex interactions between 

sensory and cognitive systems. In older adults, such interactions may be affected, 
especially in those individuals who have more severe age-related hearing loss. Using 

a data-driven approach, we assessed the temporal (when in time) and spatial (where 

in the brain) characteristics of cortical speech-evoked responses that distinguish older 
adults with or without mild hearing loss. We performed source analyses to estimate 

cortical surface signals from the EEG recordings during a phoneme discrimination 

task conducted under clear and noise-degraded conditions. We computed source-
level ERPs (i.e., mean activation within each ROI) from each of the 68 ROIs of 
the Desikan-Killiany (DK) atlas, averaged over a randomly chosen 100 trials without 
replacement to form feature vectors. We adopted a multivariate feature selection 

method called stability selection and control to choose features that are consistent 
over a range of model parameters. We use parameter optimized support vector 
machine (SVM) as a classifiers to investigate the time course and brain regions 

that segregate groups and speech clarity. For clear speech perception, whole-brain 

data revealed a classification accuracy of 81.50% [area under the curve (AUC) 
80.73%; F1-score 82.00%], distinguishing groups within ∼60 ms after speech onset 
(i.e., as early as the P1 wave). We observed lower accuracy of 78.12% [AUC 
77.64%; F1-score 78.00%] and delayed classification performance when speech was 

embedded in noise, with group segregation at 80 ms. Separate analysis using left 
(LH) and right hemisphere (RH) regions showed that LH speech activity was better 
at distinguishing hearing groups than activity measured in the RH. Moreover, stability 

selection analysis identified 12 brain regions (among 1428 total spatiotemporal features 

from 68 regions) where source activity segregated groups with >80% accuracy 
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(clear speech); whereas 16 regions were critical for noise-degraded speech to achieve 

a comparable level of group segregation (78.7% accuracy). Our results identify critical 
time-courses and brain regions that distinguish mild hearing loss from normal hearing 

in older adults and confirm a larger number of active areas, particularly in RH, when 

processing noise-degraded speech information. 

Keywords: speech perception, aging, event-related potentials, hearing loss, machine learning, stability selection 
and control, support vector machine 

INTRODUCTION 

Hearing impairment (HI) is the fifth leading disability worldwide 
(Vos et al., 2015) and the third most common chronic disease 
behind heart disease and arthritis (Blackwell et al., 2014; 
Liberman, 2017). It is one of the core contributors to the growing 
disability problem in the United States (Murray et al., 2013). In 
older adults, HI has been associated with poor cognitive health, 
social isolation, and loneliness (Lin et al., 2013; Diaz et al., 2018). 
Speech processing in the elderly relies on a complex network 
of interacting brain regions (Hickok and Poeppel, 2004, 2007; 
Rauschecker and Scott, 2009; Bidelman et al., 2019a). Age-related 
HI is thought to occur due to a myriad of changes in both the 
central auditory pathways (Bidelman et al., 2014, 2019b) and 
widespread areas of both cerebral hemispheres (Gates and Mills, 
2005). For example, studies have shown aged-related declines 
in the temporal precision (Roque et al., 2019) of (subcortical) 
neural encoding (Anderson et al., 2012; Konrad-Martin et al., 
2012; Bidelman et al., 2014; Schoof and Rosen, 2016) and 
functional magnetic resonance imaging (fMRI) has shown older 
adults have greater activation than younger adults in widespread 
cortical brain regions (Du et al., 2016; Mudar and Husain, 2016; 
Diaz et al., 2018). Older adults with hearing impairment show 
even greater activation in right hemisphere (RH) than the left 
hemisphere (LH) during speech perception in noise (Mudar and 
Husain, 2016). Similarly, the hemispheric asymmetry reduction 
in older adults (HAROLD) model (Cabeza, 2002) posits that 
older adults show a reduction in hemispheric asymmetry during 
episodic encoding and semantic retrieval. 

Speech-in-noise (SIN) perception can be diÿcult for 
older adults, especially in those with hearing loss. The 
neurophysiological factors that influence SIN perception are not 
fully understood, but likely involve rapid temporal processing. 
As such, tracking the neural encoding of speech necessitates use 
of neuroimaging techniques with excellent temporal resolution, 
such as event-related potentials (ERPs). EEG/ERPs also oer 
a non-invasive means for clinical diagnostics, including those 
related to cognitive aging as well as tracking how the brain 
encodes important features of the speech signal (Bidelman et al., 
2017). For instance, the auditory cortical ERPs, comprised of the 
P1, N1, and P2 waves, are highly sensitive to the acoustic features 
of speech (Agung et al., 2006), and correlate with listeners’ 
perception of both clear and noise-degraded speech (Tremblay 
et al., 2001; Ross et al., 2009; Bidelman et al., 2014). 

Evidence suggests that older adults incorporate more 
attentional resources than younger adults in auditory perceptual 

tasks (Alain et al., 2004; Grady, 2008). This could account for 
some of the age-related increases in ERP amplitudes reported 
in HI vs. normal hearing (NH) listeners (Alain, 2014; Bidelman 
et al., 2019b). Prior neuroimaging studies (Peelle et al., 2009; 
Wong et al., 2009; Erb and Obleser, 2013; Vaden et al., 2015) 
have also demonstrated increased activity in prefrontal regions 
related to cognitive control, attention, and working memory 
when older listeners process speech under challenging situations. 
In noisy environments, left inferior frontal gyrus and left inferior 
parietal lobe are recruited for speech perception (Dimitrijevic 
et al., 2019). In our earlier EEG studies (Bidelman et al., 2019a; 
Price et al., 2019), we used functional connectivity analysis to 
demonstrate that older listeners with mild hearing loss had 
more extended (less integrated) communication pathways 
and less eÿcient information exchange across the brain than 
their NH peers; directed connectivity analysis further showed 
that age-related HI reverses the direction of neural signaling 
within important hubs of the auditory-linguistic-motor loop 
of the dorsal-ventral pathways (e.g., primary auditory cortex – 
inferior frontal gyrus – primary motor cortex), implying a 
rerouting of information within the same speech circuitry 
(Bidelman et al., 2019a). 

Our previous study focused on a restricted set of speech-
relevant brain regions compared to the widespread and 
distributed networks involved in speech-language function 
(Rauschecker and Scott, 2009; Du et al., 2014, 2016). Machine 
learning can predict and identify subtle changes in neural activity 
very accurately and quickly, without intervention from human 
observers. It would be meaningful if brain function related to 
hearing loss in older adults could be identified from neural data 
without a priori assumptions. Extending prior hypothesis-driven 
work on the aging brain, here, we take an entirely dierent, 
comprehensive data-driven approach to test whether hearing 
status can be decoded from full-brain activity based on how 
listeners process speech. We aimed to identify the most probable 
global set of brain regions that are sensitive to HI in older adults. 
To our knowledge, this is the first study to apply decoding and 
machine learning techniques to map spatiotemporal dierences 
in speech and SIN processing in older listeners at the full-
brain level. 

The current study aimed to investigate neural changes 
associated with HI on full-brain functionality using a data driven 
multivariate approach (machine learning). We applied source 
analysis to scalp-recorded electrical brain activity recorded in 
older adults while they were presented with clear or noise-
degraded speech. ERPs were expected to dier for noise-degraded 
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compared to clear speech due to a reduction of neural synchrony 
(Koerner and Zhang, 2015) and more widespread engagement of 
neural resources in challenging acoustics (Brette, 2012; Kim et al., 
2012), including right hemisphere (Bidelman and Howell, 2016). 
We also anticipated more dramatic group dierences in noise 
since older adults with mild hearing loss are most challenged in 
degraded listening conditions (Tremblay et al., 2003). 

We hypothesized that speech-evoked responses among NH 
and HI listeners would dier with regards to time and spatial 
regions that are recruited during phoneme discrimination. We 
further hypothesized that the speech network “decoded” via 
machine learning would vary as a function of the clarity of the 
speech signal. We applied a data-driven approach (support vector 
machine (SVM), stability selection) to source-level EEG data to 
identify when (in time) and where (brain regions of interest, ROIs) 
hearing status could be decoded from brain activity. We have 
recently used a similar approach to decode perceptual decisions 
from the EEG during speech categorization tasks (Al-Fahad 
et al., 2019). We used a sliding window decoder to address the 
temporal dynamics of decoding and identify when speech-evoked 
responses distinguished older adults with NH or mild hearing 
loss. In addition, stability selection, a machine learning approach 
to identify highly consistent data features, was used to examine 
where in the brain group responses best separated older adults 
with NH vs. mild hearing loss. 

MATERIALS AND METHODS 

Analyses of the ERPs and behavioral data associated with this 
dataset are reported elsewhere (Bidelman et al., 2019a,b). In this 
study, we present a new machine learning analysis to identify 
the most discriminating spatiotemporal features of full-brain 
neuroelectric activity that best segregates NH and mild hearing 
loss listeners in terms of their SIN processing. We perform 
group analysis (NH vs. HI) in both conditions (clear and noise) 
using source-derived neural activity. We used neural data as the 
input to classifiers (e.g., SVM) to identify when in time group 
segregation was best. Furthermore, we used a robust variable 
selection technique called stability selection to find brain regions 
that are associated with hearing loss. 

Participants 
The sample consisted of thirty-two older adults (13 NH and 19 
HI; aged 52–72 years). Demographic details are provided in our 
previous reports (Mahmud et al., 2018; Bidelman et al., 2019a,b). 
The range of average hearing thresholds for the HI cohort was 
(25.83 dB to 49.16 dB) and the NH cohort was (12.08 dB to 
23.75 dB) across both ears. Listeners were divided into two 
cohorts based on their average hearing thresholds being better 
(NH) or poorer (HI) than 25 dB HL across both ears (Figure 1). 
The groups were matched in age (NH: 66.2 ± 6.1 years, HI: 
70.4 ± 4.9 years; t22.2 = −2.05, p = 0.052) and gender balance 
(NH: 5/8 male/female; HI: 11/8; Fisher’s exact test, p = 0.47). 
Puretone average thresholds between ears was symmetric in both 
the NH [t12 = 0.15, p = 0.89] and HI [t18 = −2.02, p = 0.06] 
groups. Age and hearing loss were not correlated (Pearson’s 

FIGURE 1 | Behavioral audiograms (hearing thresholds) per group. NH, 
normal-hearing listeners; HI, mild hearing loss listeners; PTA, puretone 
average threshold. 

r = 0.29, p = 0.10). No cognitive function was screened. All 
originally gave written informed consent in accordance with a 
protocol approved by the Baycrest Research Ethics Review Board. 

Stimuli and Task 
Speech tokens (/ba/, /pa/, and /ta/; 100 ms duration) (Dubno 
and Schaefer, 1992) were presented back-to-back in random 
order with a jittered interstimulus interval (95–155 ms). For both 
the clear (i.e., no noise) and noise conditions, the stimulus set 
included a total of 3000 /ba/, 3000 /pa/, and 210 /ta/ tokens 
(spread evenly over three blocks to allow for breaks. Frequent 
(/ba/, /pa/) and infrequent (/ta/) tokens were presented according 
to a pseudo-random schedule where at least two frequent stimuli 
intervened between target /ta/tokens. Listeners were asked to 
detect target /ta/ tokens. For noise blocks, the speech triplet was 
mixed with noise babble (Killion et al., 2004) at 10 dB signal to 
noise ratio (SNR). Stimuli were presented binaurally at 75 dBA 
sound pressure level (SPL) (noise at 65 dBA SPL)1 . The task lasted 
∼20 min. Analysis of the behavioral data associated with this task 
are reported elsewhere (Bidelman et al., 2019a). 

EEG Recording 
During the behavioral task, neuroelectric activity was recorded 
from 32 channels at standard 10–20 electrode locations on 
the scalp (Oostenveld and Praamstra, 2001). Preprocessing 
procedures followed our published reports (Bidelman et al., 
2019a,b). Data were re-referenced o-line to a common average. 
Following ocular artifact correction (Picton et al., 2000) cleaned 
EEGs were then filtered (1–100 Hz; notched filter 60 Hz), epoched 
(−10–200 ms), and averaged in the time domain (described in 

1Stimuli were presented at a fixed intensity (SPL). While adjusting sensation 
level (SL) would correct for the (mild) audibility issues in our HI listeners, this 
runs the risk of introducing loudness recruitment issues that often accompany 
sensorineural hearing loss. Still, we have found similar noise-related changes in HI 
listeners’ ERPs when stimuli are presented at equal dB SL (Bidelman et al., 2014), 
suggesting eects would be comparable to those observed here. 
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section “Feature Extraction”) to derive ERPs for each stimulus 
condition per participant. Responses to non-targets (/ba/ and /pa/ 
tokens) were collapsed to reduce the dimensionality of the data. 
Infrequent /ta/ responses were not analyzed given their limited 
number of trials. 

EEG Source Localization 
We localized the sources of the scalp-EEG data by performing 
a distributed source analysis. We performed source localization 
in the MATLAB package Brainstorm (Tadel et al., 2011) using a 
realistic boundary element head model (BEM) volume conductor 
(Fuchs et al., 1998, 2002) standardized to the MNI template 
brain (Mazziotta et al., 1995) – used for all participants. The 
BEM head model was implemented using the OpenMEEG 
module in Brainstorm (Gramfort et al., 2010). A BEM is less 
prone to spatial errors than other existing head models (e.g., 
concentric spherical conductor) (Fuchs et al., 2002). Essentially, 
the BEM model parcellates the cortical surface into 15,000 
vertices and assigns a dipole at each vertex with an orientation 
perpendicular to the cortical surface. From the pre-stimulus 
interval, the noise covariance matrix was estimated. We then 
used standard low-resolution brain electromagnetic tomography 
(sLORETA) to create inverse solutions (Pascual-Marqui et al., 
2002). We used Brainstorm’s default regularization parameters 
(regularized noise covariance = 0.1; SNR = 3.00). sLORETA 
provides a smoothness constraint that ensures the estimated 
current changes little between neighboring neural populations on 
the brain (Picton et al., 1999; Michel et al., 2004). Localization of 
sLORETA for 32 channel is ∼1.5x less accurate than 64 channels 
(Michel et al., 2004). Nevertheless, mean localization error for 
sLORETA is estimated to be 1.45 mm for 32 channels (Song et al., 
2015). An important point is that these methods were applied 
uniformly across all listeners/groups. Thus, while overall source 
locations might be underestimated in our source reconstruction, 
this would not account for group dierences. From each single 
trial sLORETA brain volume, we extracted the time-course of 
source activity within regions of interest (ROI) defined by the 
Desikan-Killany (DK) atlas parcellation (Desikan et al., 2006). 
This atlas has 68 ROIs (e.g., LH: 34 ROIs, and RH: 34 ROIs). 
Subsequently, these time-courses were baseline corrected from 
the pre-stimulus interval and then used as input to the SVM and 
stability selection to investigate when and where brain activity 
distinguishes NH and HI groups. 

Feature Extraction 
Generally, averaging over more trials enhances the SNR of 
the ERPs by reducing EEG noise. Our dataset included ∼6000 
trials per participant and per condition (clear, noise) that can 
provide an adequate number of training and test examples 
using ERPs computed with dierent subsets of trials (without 
replacement). From each of the 68 ROIs of the DK atlas, we 
extracted source-level ERPs (i.e., mean activation within each 
ROI) averaged over randomly chosen 25, 50, 75, 100, and 
125 trials without replacement. We then analyzed the ERP 
time courses using a sliding window basis (10 ms without 
overlap) across the whole epoch. Empirically, we found that 
responses averaged over 100 trials yielded the best classification 

results, providing a balance between classifier performance, 
computational speed, while also ensuring adequate SNR of 
the ERPs. 100 trial averages are therefore reported hereafter. 
The sliding window resulted in 21 (i.e., 210/10 ms) ERP 
features (i.e., mean amplitude per window) for each ROI 
waveform, yielding 68∗21 = 1428 features for each condition 
(e.g., clear and noise). These features were used as the input 
to the SVM classifier and stability selection coupled with SVM 
framework. As is common in classifiers, data were z-score 
normalized prior to classification and stability selection in order 
to ensure all features were on a common scale and range 
(Casale et al., 2008). 

SVM Classification 
Data driven multivariate analysis are a mainstay in modeling 
complex data and understand the relationship among all 
possible variables. Parameter optimized SVM classifiers are 
better candidate in building robust discriminative models with 
small sample sizes, which is common in human neuroimaging 
studies (Furey et al., 2000; Polat and Güneş, 2007). Classifier 
performance is greatly aected by the choice of kernel function, 
which can be used to map nonlinearly separable data to 
linearly separable space. Other tunable parameters (e.g., kernel, 
C, γ)2 also alter performance (Hsu et al., 2003). As such, 
we used a grid search approach (range of C = 1e-2 to 
1e2, and γ = 1e-2 to 7e-4) to find the optimal kernel, 
C, and γ values (kernels = ‘RBF’). We randomly split the 
data into training and test sets (80% and 20%, respectively) 
(Park et al., 2011). 

During the training phase, we fine-tuned the C and γ 
parameters to find optimal values for the classifier that maximally 
distinguished observations from the NH vs. HI group. The SVM 
learned the support vectors from the training data that comprised 
the attributes (e.g., ERPs amplitudes) and class labels (e.g., NH 
and HI). The resulting hyperplanes were fixed with maximum 
margin (e.g., maximum separation between the two classes) and 
used for predicting the unseen test data (by providing only the 
attributes but no class labels). Classification performance was 
calculated from standard formulas (accuracy, F1-score, and area 
under the curve (AUC)) (Saito and Rehmsmeier, 2015). AUC is 
a discriminating metric that describes the degree to which the 
model is capable of distinguishing between classes. An excellent 
model has AUC near to 1, meaning it has a good measure of 

2 Parameters γ and C in the SVM used in this study gives a measure of the influence 
of training data points on decision boundary and a measure of miss-classification 
tolerance. The first parameter γ comes from the radial basis function kernel (e.g.,
K(x, x ) = exp 

 
− ||x−x

||
2 

2σ2

 
or equivalently K(x, x ) = exp 

�
− γ || x−x ||2 

 
with 

a parameter γ) where γ = 1 
2σ2 . In this study, the radial basis kernel is used as 

a transformation function. A larger value of γ implies smaller σ, which means 
that the classifier takes into account the eect of samples closer to the decision 
boundary. On the other hand, smaller γ means that the classifier considers the 
eect of samples farther from the decision boundary. The C is a parameter of SVM 
that acts as regularization. It provides the classifier a trade-o between the margin 
of decision boundary and miss – classification. A larger value of C produces a 
narrower (smaller-margin) hyperplane if that obtains less or no miss-classification. 
Whereas the smaller value of C allows drawing a wider (bigger-margin) hyperplane 
even if there are some miss-classifications. The optimal value of γ and C depends 
on data, which is why we used a grid search to tune these parameters in our 
classification model. 

Frontiers in Neuroscience | www.frontiersin.org 4 July 2020 | Volume 14 | Article 748 

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00748 July 14, 2020 Time: 17:41 # 5

Mahmud et al. Decoding Hearing Loss via EEG 

separability. On the other hand, a poor model has AUC close to 
0, meaning it has poor separability. 

Stable Feature Selection (Stability 
Selection) 
A robust model should be complete enough to allow 
generalization and be easy to interpret. On the contrary, 
large numbers of feature variables (several thousand, as 
measured here) are susceptible to overfitting and can lead to 
models that lack interpretability. This requires selecting a set 
of the most salient discriminating features that are consistent 
across a range of model parameters. Feature selection is diÿcult, 
especially when the number of samples are small as compared 
to the number of features. Stability selection is a state-of-the-art 
feature selection method that works well in high dimensional 
or sparse problems based on Lasso (least absolute shrinkage 
and selection operator) (Meinshausen and Bühlmann, 2010; 
Yin et al., 2017). Stability selection uses a Randomized Lasso 
algorithm, which works by resampling the training data set 
and computing feature scores on each resampling over the 
range of regularization parameters. Because stability selection 
includes an internal randomization technique (over many 
interactions), it yields a more reliable and consistent feature 
set than the conventional filtering and other multivariate 
approaches. Stability selection can identify the most stable 
(relevant) features from a large number of features, even if the 
necessary conditions required for the original Lasso method are 
violated (Meinshausen and Bühlmann, 2010). 

In stability selection, a feature is considered to be more 
stable if it is more frequently selected over repeated subsampling 
of the data (Nogueira et al., 2017). Basically, the Randomized 
Lasso randomly subsamples the training data and fits a L1-
penalized logistic regression model to optimize the error. 
Lasso reduces the variance without substantially increasing bias 
during the subsampling process. Over many iterations, feature 
scores are (re)calculated. The features are shrunk to zero by 
multiplying the features’ coeÿcient by zero while the stability 
score is lowered. Surviving non-zero features are considered 
important variables for classification. Detailed interpretation 
and mathematical equations of stability selection are explained 
in Meinshausen and Bühlmann (2010). The stability selection 
solution is less aected by the choice of initial regularization 
parameters. Consequently, it is extremely general and widely 
used in high dimensional data even when noise level in the 
data is unknown. 

We considered sample fraction = 0.75, number of 
resamples = 1000, with tolerance = 0.01 (Meinshausen and 
Bühlmann, 2010; Al-Fahad et al., 2019) in our implementation 
of stability selection3 . In the Lasso algorithm, the feature scores 
were scaled between 0 and 1, where 0 is the lowest score (i.e., 
irrelevant) and 1 is the highest score (i.e., most salient or 

3 Randomized lasso is a two-step randomization process: i) randomly select a 
fraction of samples; ii) randomly select the regularization parameter (to build a 
new model iteration). This process iterates ‘N’ number of times to build ‘N’ number 
of randomized models. Sample fraction refers to the fraction of samples to be 
used in each randomized design. The resampling number refers to the number 
of randomized models. 

stable feature). We estimated the regularization parameter from 
the data using the least angle regression (LARs) algorithm 
(Efron et al., 2004; Friedman et al., 2010). Over 1000 iterations, 
Randomized Lasso provided the overall feature scores (0∼1) 
based on frequency a variable was selected. We ranked stability 
scores to identify the most important, consistent, stable, and 
invariant features (i.e., neural amplitudes across all ROIs and 
time) over a range of model parameters. We submitted these 
ranked features and corresponding class labels to an SVM 
classifier. Based on the input stable features, SVM classified 
the group membership with dierent stability threshold values. 
The stability threshold corresponding to the model that yielded 
maximum accuracy, AUC, and F1-score was considered as the 
optimal threshold. 

RESULTS 

ERPs in HI vs. NH Older Adults 
We first visualized the source (region-specific) ERPs of NH and 
HI listeners during clear and noise-degraded speech perception. 
Figure 2 presents source waveforms for clear and noise-
degraded speech within four representative ROIs among the 
auditory-linguistic-motor loop that are known to be important 
in speech processing in older listeners (Bidelman et al., 
2019a): primary auditory cortex [transverse temporal (TRANS) 
gyrus], primary motor cortex [precentral (PRC) gyrus], Broca’s 
area [paras triangularis (PT)]. In both conditions (clear and 
noise-degraded) HI generally showed higher ERPs than NH 
(Figure 2). A detailed analysis of the ERPs is reported elsewhere 
(Bidelman et al., 2019b). 

SVM Classification of Hearing Status 
Using ERP Features 
We analyzed group classification performance using (i) whole-
brain source waveform data and (ii) each hemisphere (e.g., 
LH and RH) individually. We submitted ERP amplitudes and 
corresponding class labels to the SVM using a sliding window 
(10 ms) basis over the entire 210 ms epoch window (see Figure 2). 
We used 5-fold cross-validation4 (Bhasin and Raghava, 2004) and 
carried out the grid search approach during the training period to 
determine the optimal parameters of the classifier. The optimal 
values of C and G parameters corresponding to the maximum 
group segregation reported in Table 1 were: [clear speech: C = 20, 
G = 0.01 for whole-brain data; C = 70, G = 0.01 for LH; and C = 70, 
G = 0.01 for RH. Noise-degraded speech: C = 10, G = 0.01 for 
whole-brain data; C = 30, G = 0.01 for LH; and C = 30, G = 0.01 for 
RH]. We then selected the best model and performance metrics 
from the predicted class labels, which were obtained from the 
unseen test data as well as true class labels. We applied the SVM 
classifier on features extracted over 10 ms sliding windows to 

4 Actual sample data were divided into 80% as training and 20% as the test set. The 
80% is divided into 5 equal size chunks. One chunk is left as a validation set during 
training. The SVM was trained on the remaining 4 chunks and validated with the 
left a chunk alone. This loop continued 5 times to get SVM trained on the 80% 
training set and the best estimation is kept as a trained model. We then evaluated 
the model performance by submitting the features of the 20% unseen test data. 
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FIGURE 2 | Source-level ERPs for the NH and HI groups in representative ROIs. Solid lines = HI; dotted lines = NH. (A) Clear speech responses. 
(B) Noise-degraded speech responses. Baseline was corrected to the prestimulus interval. NH, normal hearing; HI, hearing impaired; L, Left; R, Right; lPT, 
parstriangularis L; lPRC, precentral L; rPRC, precentral R; rTRANS, transverse temporal R. 

categorize NH vs. mild hearing loss. The accuracy over each time 
window is presented in Figure 3; maximum accuracy and its 
corresponding latency are shown in Figure 4 and summarized 
in Table 1. 

For ERP responses elicited by clear speech, the classifier 
conducted on full-brain data (all 68 ROIs) yielded a maximum 
accuracy in labeling groups of 81.50% at 60 ms. Classification was 
still quite accurate using LH (34 ROIs) responses alone (79.62%), 
but group segregation occurred at the same latency at 60 ms. The 
poorest accuracy was obtained using RH (34 ROIs) features alone 
(75.87%) at a latency of 50 ms. 

For ERP responses to noise-degraded speech, maximum 
classification occurred later than for clear speech. The maximum 
classifier accuracy was 78.12% at 80 ms using full-brain data. 
The LH features showed slightly lower accuracy (77.28%) than 
the whole brain at a latency of 180 ms. RH features provided 
the lowest accuracy (75.34% at 120 ms), among the three 

TABLE 1 | SVM classifier maximum performance (%) distinguishing hearing 
status (NH vs. HI). 

Speech 
stimulus 

Measure Whole brain 
features 

LH features RH features 

Clear Accuracy 81.50 79.62 75.87 

AUC 80.73 79.75 75.25 

F1-score 82.00 80.00 76.00 

Noise Accuracy 78.12 77.28 75.34 

AUC 77.64 76.93 75.19 

F1-score 78.00 77.00 75.00 

Maximum classification based on the time-varying SVM results shown in Figure 3. 
AUC, area under the receiver operating characteristic (ROC) curve. F1-score = 2 
(precision × recall)/(precision +recall). Chance level is 50%. LH: left hemisphere; 
RH: right hemisphere. 

feature scenarios. Still, these group classification results are well 
above chance (i.e., 50%) and reveal the temporal dynamics of 
cortical speech activity that robustly identifies older listeners with 
mild hearing loss. 

Stability Selection Coupled With SVM 
We used stability selection to identify the most important brain 
ROIs that segregate groups without overfitting. ERP amplitude 
features were considered stable if they yielded higher stability 
scores at an 80% criterion level of classification performance 
(i.e., >80% group separation). During pilot modeling, we roved 
stability thresholds, which yielded dierent levels of classification 
performance. The eect of stability selection threshold on model 
performance is delineated in Figure 5A (clear) and Figure 5B 
(noise-degraded). The histogram shows the distribution of 
feature scores. The first line of x-axis represents the stability 
score (0 to 1); the second and third line represent the number 
and percentage of selected features under the corresponding bin; 
line four shows the number of cumulative unique brain ROIs 
up to the lower boundary of the bin. The semi bell-shaped solid 
black and red dotted lines of Figure 5 indicate the accuracy 
and AUC curve for dierent stability scores, respectively. In our 
stability selection analysis, the number of features represents 
ROI-specific source ERP amplitudes (in dierent time windows) 
and the number of unique ROIs represent functionally distinct 
brain areas of the DK atlas. 

The selected subset of features from the whole-brain identified 
via stability selection were then submitted to an SVM. For both 
clear and noise-degraded speech, the SVM classifier performance 
changed with the choice of stability threshold. We found that for 
clear speech, 81% of the features had scores (0 to 0.1) whereas 
76% for noise-degraded speech detection. This means that the 
majority of ERP features were selected <10% of the time out 
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FIGURE 3 | Time-varying group classification (NH vs. HI) as a function of neural data (clear and noise conditions) and hemisphere. Group classification accuracy from 
(A) Whole-brain data (all 68 ROIs), (B) LH data alone (34 ROIs), and (C) RH data alone (34 ROIs). LH, left hemisphere; RH, right hemisphere. 0 ms = stimulus onset. 
Green solid line indicates group segregation during clear speech perception, red dotted line indicates group segregation during noise-degraded speech perception. 

FIGURE 4 | Maximum classifier accuracy (y axis) and corresponding latency (x axis) for distinguishing NH and HI listeners using source amplitudes from the 
whole-brain (blue triangle), and LH (orange square) vs. RH (green circle) separately. (A) Clear speech responses. (B) Noise-degraded speech responses. 

of 1000 model iterations and thus carried near-zero importance 
in terms of segregating groups. Thus, 81% of the features were 
not related to segregating groups for clear speech, and 76% were 
irrelevant features for noise-degraded conditions. 

For clear speech, maximum accuracy in distinguishing 
groups (92.2% accuracy; AUC 91.9%, F1-score 92.0%) was 
achieved using a stability score threshold of 0.10. At this 
threshold, the number of selected features was 278 (19%) 
out of 1428 from the 68 ROIs. For noise-degraded speech, 
stability selection selected 337 (24%) out of 1428 features from 

68 ROIs, corresponding to 85.9% accuracy (AUC 84.5%, F1-
score 86.0%). Less than or greater than this optimal stability 
threshold the classifier showed poorer performance. Below 
the optimal threshold of 0.1, classifier performance was lower 
because irrelevant features were selected, whereas above the 
0.1 threshold, some relevant features for distinguishing hearing 
status were discarded. 

Moreover, even when we selected a stability threshold of 0.7 
(more conservative feature selection), clear speech responses 
could segregate groups with 66.2% accuracy using only two 
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FIGURE 5 | Effect of stability score threshold on model performance. The bottom of x-axis has four labels; Stability score, represents the stability score range of 
each bin (scores: 0∼1); Number of features, number of features under each bin; % features, corresponding percentage of selected features; ROIs, number of 
cumulative unique brain regions up to lower boundary of the bin. (A) Clear speech. (B) Noise-degraded speech. 

TABLE 2 | Most important brain regions (clear: 12 ROIs; noise: 16 ROIs; 0.50 stability threshold) distinguishing age-related hearing loss via EEG. 

Rank Clear (81.8% total accuracy) Noise (78.7% total accuracy) 

ROI name ROI abbrev. Stability score ROI name ROI abbrev. Stability score 

1 Temporal pole R rTP 0.86a Rostral middle frontal L lRMF 0.93 

2 Fusiform R rFUS 0.84 Fusiform R rFUS 0.81 

3 Superior parietal L lSP 0.65 Inferior temporal R rIT 0.7 

4 Precentral R rPRC 0.60 Caudal middle frontal R rCMF 0.64 

5 Precentral L lPRC 0.58 Inferior parietal L lIP 0.60 

6 Caudal middle frontal R rCMF 0.55 Bankssts R rBKS 0.60 

7 Precuneus L lPREC 0.55 Paracentral R rPARAC 0.58 

8 Middle temporal L lMT 0.53 Precentral R rPRC 0.57 

9 Isthmus cingulate R rIST 0.53 Bankssts L lBKS 0.57 

10 Bankssts L lBKS 0.52 Temporal pole R rTP 0.55 

11 Bankssts R rBKS 0.51 Para hippocampal L lPHIP 0.53 

12 Superior temporal L lST 0.50 Isthmus cingulate R rIST 0.53 

13 – – – Superior temporal R rST 0.53 

14 – – Pericalcarine L lPERI 0.52 

15 – – – Superior parietal L lSP 0.51 

16 – – – Inferior parietal R rIP 0.50 

a Here a score of 0.86, for example, means that out of 1000 iterations, the ERP feature of this ROI was selected 860 times by stability selection. 

ROIs (top two in Table 2). In contrast, noise-degraded speech 
yielded 64.7% accuracy with only three ROIs. These results 
indicate that hearing status can be decoded still above chance 
levels using only a few brain regions engaged during speech 
perception. It is also notable that a larger number of ROIs 
were selected in noise-degraded speech perception as compared 
to clear speech perception corresponding to the same stability 
threshold and accuracy. 

Balancing these lax vs. strict models, we found that for clear 
speech, a mid-level stability threshold of 0.5 segregated groups at 
81.8% accuracy [AUC (81.0%) and F1-score (82.0%)] by selecting 
only 16 features from 12 unique ROIs (Table 2). Accuracy 
degraded by ∼10% (92.2% to 81.8 %) from the optimal value 
but the number of features reduced dramatically from 278 to 
16, stemming from only 12 (rather than 63) ROIs. For noise-
degraded speech perception, only 24 features were selected from 
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16 unique ROIs and produced accuracy 78.7%, AUC 79.0% and 
F1-score 79.0% [i.e., accuracy degraded by 7% from optimal 
accuracy (85.9%)] but well above chance level even in noise-
degraded conditions. Thus, we considered a stability selection 
threshold of 0.5 which provided reasonable performance and 
less computation, but more critically, an interpretable network 
to describe neurophysiological speech processing. The network 
of brain ROIs (at 0.5 stability threshold) for clear and noise-
degraded speech perception are shown in Figures 6 and 7 using 
the BrainO (Moinuddin et al., 2019) visualization tool. Additional 
details are provided in Table 2. 

DISCUSSION 

In this study, we performed multivariate analyses on EEG to 
decode the spatiotemporal dynamics of neural speech processing 
and identify when and where brain activity is most sensitive to 
age-related declines in hearing. 

Hearing Status Is Decoded Early Within 
the Time-Course of Speech Processing 
Our data corroborate previous studies showing speech-ERPs 
are higher in amplitude for clear compared to noise-degraded 

speech detection and HI compared to NH listeners, consistent 
with the eects of hearing loss and background noise on 
auditory cortical responses (Alain, 2014; Bidelman et al., 2014, 
2019b). Extending previous work, we used these ERP attributes 
in SVM classification to assess the time-course of the brain’s 
response to speech and their ability to segregate normal 
and hearing-impaired listeners. Among the three classification 
scenarios (e.g., whole-brain, LH, and RH), whole-brain data 
provided the best group dierentiation in the time frame of 
the P1 wave (∼50 ms). Additionally, LH activity provided 
better dierentiation of groups’ speech processing than RH. 
Improved group discrimination in the timeframe of the P1 is 
consistent with previous reports, which show abnormally large 
P1 responses in older adults with HL (Woods and Clayworth, 
1986; Tremblay et al., 2003; Snyder and Alain, 2005; Alain and 
Snyder, 2008; Bidelman et al., 2014; Zendel and Alain, 2014; 
Bidelman and Walker, 2019). Increased P1, a wave reflecting 
the early registration of sound in auditory cortex, presumably 
results from deceased neural inhibition (Caspary et al., 2008) 
and/or increased deaerentation (Kujawa and Liberman, 2015) 
that accompanies aging. 

Classification based on the sliding window analysis (full-brain 
level) showed maximum group decoding accuracy at 60 ms 
for clear speech, whereas noise-degraded speech, maximum 

FIGURE 6 | Stable (most consistent) neural network distinguishing NH and HI listeners during clear speech processing. Visualization of brain ROIs corresponding to 
0.50 stability threshold (12 top selected ROIs which segregate groups at 81.8%) for clear speech perception. (A) LH; (B) RH; (C) Posterior view; (D) Anterior view. 
Stability score (color legend): (0.70 ≤ pink ≤ 1.0); (0.60 ≤ blue < 0.70); (0.50 ≤ white < 0.60). L, Left; R, Right; rTP, temporal pole R; rFUS, fusiform; lSP, sperior 
parietal L; rPRC, precentral R; lPRC, precentral L; rCMF, caudal middle frontal R; lPREC, precuneus L; lMT, middle temporal L; rIST, isthmuscingulate R; lBKS, 
bankssts L; rBKS, bankssts R; lST, superior temporal L. 

Frontiers in Neuroscience | www.frontiersin.org 9 July 2020 | Volume 14 | Article 748 

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00748 July 14, 2020 Time: 17:41 # 10

Mahmud et al. Decoding Hearing Loss via EEG 

FIGURE 7 | Stable (most consistent) neural network that distinguishes NH and HI listeners during noise-degraded speech processing. 16 top selected ROIs, 78.7% 
group classification. (A) LH; (B) RH; (C) Posterior view; (D) Anterior view. lRMF, rostral middle frontal L; rIT, inferior temporal R; lIP, inferior parietal L; rPARAC, 
paracentral R; lPHIP, para hippocampal L; rST, superior temporal R; lPERI, pericalcarine L; rIP, inferior parietal R. Otherwise as in Figure 6. 

accuracy was observed later at 80 ms. These results suggest 
that the P1 can be a useful attribute to segregate NH and 
HI listeners’ neurophysiological processing of speech but also 
depends on the clarity (i.e., SNR) of the speech signal. Since 
the P1 wave is generated by the thalamus and primary auditory 
cortex (Erwin and Buchwald, 1987; Liegeois-Chauvel et al., 1994; 
McGee and Kraus, 1996; Eggermont et al., 1997; Jang et al., 
2010), this suggests mild hearing loss in older adults changes 
auditory processing in early sensory regions. Furthermore, for 
noise-degraded speech, maximum group segregation was delayed 
relative to clear speech using whole-brain, LH and RH data. These 
delays were 20 ms for whole-brain, 120 ms for LH, and 70 ms 
for RH relative to clear speech. The later decoding for noise-
degraded speech is perhaps expected due to inherent masking of 
the stimulus signal, which weakens the neural representation for 
speech, decreases the amplitude, and prolongs the latency of the 
ERPs. Previous studies have indeed shown that neural responses 
are significantly influenced by noise at the level of the midbrain 
(Burkard and Sims, 2002; Anderson et al., 2010; Ding and Simon, 
2013; Presacco et al., 2016) and cortex (Billings et al., 2013, 2015; 
Bidelman and Howell, 2016; Bidelman and Yellamsetty, 2017). 
Thus, the delay in maximum decoding accuracy we find in the 
SIN condition is consistent with prior work. Moreover, the better 
performance by LH compared to RH activity in distinguishing 

groups is consistent with the dominance of LH in phoneme 
discrimination and speech sound processing (Zatorre et al., 1992; 
Frost et al., 1999; Tervaniemi and Hugdahl, 2003; Bidelman and 
Howell, 2016; Bidelman and Walker, 2019). 

Our data cannot adjudicate the cause of older adults’ hearing-
related changes in the EEG. Hearing loss is defined clinically 
by the audiogram, which is thought predominately to reflect 
peripheral (cochlear) integrity (Kujawa and Liberman, 2015). In 
addition to peripheral damage, changes in the central auditory 
pathway (Caspary et al., 2006; Humes et al., 2012; Bidelman 
et al., 2014), decreased gray and white matter in the central 
nervous system (Peelle and Wingfield, 2016), and eventually age-
related atrophy that limits cognitive capacities all contribute to 
hearing issues in older adults (Humes et al., 2013). Regardless of 
the underlying etiology, it is clear that hearing-related changes 
manifest in neural reorganization, which is decodable in cortical 
scalp potentials. Moreover, our sample included listeners with 
relatively homogenous hearing impairment (less than mild 
HL) and we did not screen for cognitive function. Although 
we adopt widely used clinic criteria, there is typically large 
individual dierences in older adults speech perception even with 
a similar (or even normal) audiogram (Konkle et al., 1977; van 
Rooij and Plomp, 1992; Gordon-Salant and Fitzgibbons, 1993; 
Cruickshanks et al., 1998; Strouse et al., 1998; Schneider et al., 
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2002; Hutka et al., 2013). However, behaviorally, our older HI 
listeners showed little decrement in speech detection accuracy 
relative to their NH peers, although they were more variable 
on standardize measures of SIN perception (i.e., QuickSIN test) 
(Bidelman et al., 2019a). Still, future studies are needed to 
determine (i) if our brain decoding results generalize to more 
severe (or even undiagnosed) hearing losses, (ii) scale with 
individual dierences in perceptual skills, and (iii) might change 
with cognitive decline that is common in older adults (e.g., 
Bidelman et al., 2017). 

Noise-Degraded Speech Processing 
Requires More (Right Hemisphere) 
Neural Resources Than Clear Speech 
Processing 
We extend previous neuroimaging studies by demonstrating the 
most stable, consistent, and invariant functional brain regions 
supporting age-related speech and SIN processing using a 
data-driven approach (stability selection coupled with SVM). 
Stability selection with randomized Lasso on full-brain neural 
data identified the most important brain regions associated with 
hearing loss over a range of model parameters. Our analysis 
revealed the most stable brain regions could segregate groups 
at >80% accuracy from the ERP features alone corresponding 
to an optimal stability score (0.1). Group segregation was still 
reasonably accurate using a more stringent stability score of 0.5, 
which identified a sparser subset of brain regions that described 
age-related declines in speech processing (Table 2). 

For clear speech perception, stability selection identified 
12 regions, four ROIs from temporal lobe including bilateral 
superior temporal sulcus, three regions from frontal, and three 
from parietal lobe. For noise-degraded speech perception, five 
important regions emerged in the temporal lobe including 
bilateral superior temporal sulcus, four regions from frontal 
lobe, four from partial lobe, and one region from occipital lobe. 
For both clear and noise-degraded speech, a greater number 
of regions were recruited from the temporal lobe. This finding 
supports previous studies (Crinion et al., 2003; Okada et al., 2010; 
Peelle et al., 2010) that suggest a critical engagement of temporal 
lobe for speech perception. 

Among the two networks identified via stability selection, 
eight regions were common for clear and noise-degraded speech 
perception. One of these, the right temporal pole, is part 
of the auditory ventral pathway which plays a role in the 
coding, representation, and perception of nonspatial attributes 
of sound including auditory identity (Rauschecker and Tian, 
2000; Alain et al., 2009). Recruitment of precentral gyrus in 
our speech tasks is probably also anticipated given the role 
of primary motor areas in phoneme processing, particularly 
in noise (Du et al., 2014; Hickok, 2014). Superior temporal 
areas – especially in left hemisphere (r/lBKS, lST) – were also 
recruited, consistent with their role in the phonological network 
(Skeide and Friederici, 2016). 

Interestingly, for noise-degraded speech perception, we found 
several non-overlapping regions including dorsolateral prefrontal 
cortex (rostral middle frontal). The additional recruitment 

of this area when the phonemes were embedded in noise 
most probably reflects compensatory processing associated with 
working memory and higher-order speech processing (Zatorre 
et al., 1992; Gabrieli et al., 1998; Wong et al., 2004; Alain 
et al., 2018), which would necessarily need to be engaged 
during the more complex listening demands of noise. The other 
non-overlapping areas in the inferior parietal lobe (lIP/rIP) 
are associated with phonological (Burton, 2001) and auditory 
working memory (Alain et al., 2008). Perhaps involvement of the 
remaining regions unique to the noise condition also aids noise-
degraded speech perception, in a yet unknown way. For example, 
we speculate that the dual involvement of the pericalcarine and 
inferior temporal areas in the noise condition may reflect a form 
of visual or motor imagery listeners use as a strategy to cope 
with task diÿculty (Ganis et al., 2004; Tian and Poeppel, 2012). 
It is noticeable that for clear speech, about half (6/12 = 50%) 
of the stable regions were from LH. However, LH involvement 
was reduced for noisy speech perception (6/16 = 37.50%) which 
was paralleled by stronger RH involvement (i.e., 10/16 = 62.50% 
stable regions were right lateralized). This hemisphere asymmetry 
cannot be explained by dierences in hearing between ears as 
our listeners showed bilateral symmetric audiograms. However, 
older adults do show symmetric lateralization for clear speech 
perception, which corroborates the so-called HAROLD model 
of aging (Cabeza, 2002). On the other hand, older adults 
showed asymmetric lateralization while perceive noise-degraded 
speech. Our findings are broadly consistent with previous 
neuroimaging studies demonstrating that noise-degraded speech 
perception requires additional RH brain regions to compensate 
for the impoverished acoustic signal (Shtyrov et al., 1998, 1999; 
Bidelman and Howell, 2016; Mudar and Husain, 2016). 

Collectively, our findings show that additional brain regions 
are recruited in the temporal, frontal and partial lobe while 
processing the noise-degraded speech relative to clear speech. 
Previous neuroimaging studies (Peelle et al., 2009; Wong 
et al., 2009; Erb and Obleser, 2013; Guediche et al., 2014; Du 
et al., 2016; Dimitrijevic et al., 2019; Yi et al., 2019) have 
similarly demonstrated that noise-degraded speech perception 
increases recruitment of temporal (i.e., perceptual processing), 
frontal brain (i.e., upregulation of frontal areas), and parietal 
regions. Our data driven approach corroborates previous studies 
by confirming more brain regions are allocated to process 
acoustically degraded compared to clear speech. Nevertheless, 
given the limited spatial resolution of EEG, future studies using 
more spatially precise neuroimaging techniques (e.g., fMRI) are 
needed to fully confirm the stable ROIs observed here. 

CONCLUSION 

We investigated when and where cortical brain activity segregates 
NH and HI listeners by using multivariate analyses on EEG 
recordings obtained while the subjects were performing a specific 
task. The proposed data driven approach showed that the P1 
wave of the auditory ERPs robustly distinguish NH and HI 
groups, revealing speech-evoked neural responses are highly 
sensitive to age-related hearing loss. Our results further suggest 
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that identifying listeners with mild hearing impairment based on 
their EEGs is also 3.75% more robust when using LH compared 
to RH features of brain activity, particularly under listening 
conditions that tax the auditory system (i.e., noise interference). 
From stability selection and SVM classifier analyses, we identified 
sparse (<16 regions) yet highly robust networks that describe 
older adults’ speech processing. Yet, we found more neural 
resources are required to distinguish hearing-related declines in 
speech processing in noise, particularly in the right hemisphere. 
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