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Introduction: Real time modulation of brainstem frequency-following responses 

(FFRs) by online changes in cortical arousal state via the corticofugal (top-down) 

pathway has been demonstrated previously in young adults and is more prominent in 

the presence of background noise. FFRs during high cortical arousal states also have 

a stronger relationship with speech perception. Aging is associated with increased 

auditory brain responses, which might reflect degraded inhibitory processing within 

the peripheral and ascending pathways, or changes in attentional control regulation 

via descending auditory pathways. Here, we tested the hypothesis that online 

corticofugal interplay is impacted by age-related hearing loss. 

Methods: We measured EEG in older adults with normal-hearing (NH) and mild 

to moderate hearing-loss (HL) while they performed speech identification tasks in 

different noise backgrounds. We measured α power to index online cortical arousal 

states during task engagement. Subsequently, we split brainstem speech-FFRs, on 

a trial-by-trial basis, according to fluctuations in concomitant cortical α power into 

low or high α FFRs to index cortical-brainstem modulation. 

Results: We found cortical α power was smaller in the HL than the NH group. In 

NH listeners, α-FFRs modulation for clear speech (i.e., without noise) also resembled 

that previously observed in younger adults for speech in noise. Cortical-brainstem 

modulation was further diminished in HL older adults in the clear condition and by 

noise in NH older adults. Machine learning classification showed low α FFR frequency 

spectra yielded higher accuracy for classifying listeners’ perceptual performance in 

both NH and HL participants. Moreover, low α FFRs decreased with increased hearing 

thresholds at 0.5–2 kHz for clear speech but noise generally reduced low α FFRs in 

the HL group. 

Discussion: Collectively, our study reveals cortical arousal state actively shapes 

brainstem speech representations and provides a potential new mechanism for older 

listeners’ difficulties perceiving speech in cocktail party-like listening situations in 

the form of a miss-coordination between cortical and subcortical levels of auditory 

processing. 
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1. Introduction 

Declines in auditory processing (Poth et al., 2001; Parthasarathy 
et al., 2010; Kortlang et al., 2016; Lai and Bartlett, 2018) and 
speech comprehension (Schneider et al., 2005; Peelle et al., 2010; 
Anderson et al., 2012)—especially in the presence of background 
noise (Dubno, 1984; Takahashi and Bacon, 1992; Souza et al., 2007; 
Anderson et al., 2011; Song et al., 2011; Jin et al., 2014; Presacco 
et al., 2016; Vermeire et al., 2016)—are ubiquitous during aging 
and age-related hearing loss. Age-related declines in the sensory 
(auditory) system (Parthasarathy and Bartlett, 2011, 2012; Fostick 
et al., 2013; Parthasarathy et al., 2014, 2016; Lai and Bartlett, 2015, 
2018; Lai et al., 2017) [e.g., age-related impairments in sound source 
segregation (Alain et al., 1996; Alain and McDonald, 2007; Gallun 
and Best, 2020)], changes in cognitive function (Park et al., 2003), 
or a combination of both (Pichora-Fuller and Singh, 2006; Wingfield 
et al., 2005; Wayne and Johnsrude, 2015) could lead to listening and 
comprehension diÿculties in elderly listeners. 

Evidence suggests that speech-in-noise (SiN) problems could 
be related to dysfunctional connections and changes in speech 
processing between cortical and subcortical levels of the auditory 
system that emerge with age and age-related hearing impairment. It is 
well-established that SiN processing can be aected by many factors, 
such as attention (Saiz-Alía et al., 2019; Price and Bidelman, 2021) 
and arousal state (Mai et al., 2019; Saderi et al., 2021). Several studies 
have shown neural correlates of these phenomena. For example, 
findings from EEG studies on emotion suggest that power in the 
cortical α band (8–12 Hz) is a useful indicator of arousal state 
(Aftanas et al., 2002; Uusberg et al., 2013). Moreover, parieto-occipital 
α power was shown to index cognitive processing, eortful listening 
(Wöstmann et al., 2015; McMahon et al., 2016; Dimitrijevic et al., 
2017), the state of wakefulness (Pfurtscheller et al., 1996) and top-
down processing (Henry et al., 2017). Alpha oscillatory activity 
has also been associated with adaptive, intentional, and top-down 
suppression of task-irrelevant information (Rihs et al., 2007; Jensen 
and Mazaheri, 2010; Händel et al., 2011; Klatt et al., 2020). Increased 
α power has been proposed to index inhibitory processing across 
sensory modalities (Klimesch et al., 2007; Weisz et al., 2007, 2011; 
Strauß et al., 2014), while decreased α oscillations are thought to 
facilitate sensory processing or neural firing (Haegens et al., 2011; 
Klatt et al., 2020). There is, however, no consensus regarding the 
mechanisms underlying α oscillations reported in these studies. In 
most studies α is treated as a unitary measure rather than reflecting 
dierent underlying processes. Meanwhile, evidence suggests that 
cortical α oscillations changes with aging (Yordanova et al., 1998; 
Böttger et al., 2002), such as a decrease in α frequency (Chiang 
et al., 2011) and reduced spontaneous entrainment of resting-state 
α oscillations (Gaál et al., 2010). Studying α power during SiN 
perception in older adults may reveal the impacts of aging in 
top-down attentional control that help facilitate the processing of 
target vs. non-target sounds, thus providing insight concerning why 
cocktail party-like situations are more diÿcult in older listeners 
(Pichora-Fuller et al., 2017). 

In addition to cortical changes, age-related declines in speech 
coding have been widely observed at subcortical levels of the auditory 
system, both in terms of local processing within the brainstem but 
also its functional signaling to and from the cortex (Bidelman et al., 
2019). In young adults, we recently observed that speech-evoked 
brainstem frequency-following response (FFR) amplitude varied as 

a function of α power (Lai et al., 2022). Low FFR amplitude coincided 
with low α power whereas high FFR amplitude was associated with 
high α states. Notably, low α FFRs correlated positively with response 
times (RTs) for speech discrimination and more accurately decoded 
the input speech stimuli revealed by neural classifiers. Extending 
this approach to address questions of auditory aging, we analyzed 
neuroelectric FFRs recorded during active speech perception in age-
matched older adults with normal (NH) or mild hearing loss (HL). 
This allowed us to investigate the eects of age-related hearing loss 
on cortical α state and its modulation of brainstem speech processing 
in real time. We aimed to determine the nature of auditory cortical-
brainstem interplay in older adults, and more critically, whether such 
online corticofugal engagement during SiN listening is altered due to 
hearing loss, as suggested in prior work (Bidelman et al., 2019). Our 
results reveal that brainstem speech-FFRs are dynamically modulated 
by fluctuations in cortical α state in normal-hearing listeners but this 
cortical-subcortical interplay declines in age-related hearing loss. 

2. Materials and methods 

2.1. Participants 

Detailed information on participants, informed consent, and 
demographics are reported in our original report detailing age-related 
changes in the brainstem and cortical evoked potentials (Bidelman 
et al., 2019). New analyses herein examine online changes in FFRs 
as a function of the simultaneous cortical state. All participants had 
no reported history of neurological or psychiatric illness. Participants 
were aged between 52 and 75 (69 ± 5.8 years; 16/16 M/F). There 
were divided into normal (NH) and hearing-impaired (HL) groups 
based on their pure-tone audiometry hearing thresholds. We used 
25 dB HL as the cuto to define normal hearing per standard clinical 
conventions (Gatlin and Dhar, 2021). NH listeners (n = 13) had 
average thresholds (250–8,000 Hz) better than 25 dB HL across both 
ears whereas HL listeners (n = 19) had average thresholds poorer 
than 25 dB HL. The pure-tone averages (PTAs) (i.e., mean of 500, 
1,000, 2,000 Hz) of NH listeners were ∼10 dB better than in HL 
listeners (mean ± SD; NH: 15.3 ± 3.27 dB HL, HL: 26.4 ± 7.1 dB 
HL; t2.71 = −5.95, p < 0.0001; NH range = 8.3–20.83 dB HL, HL 
range = 15.8–45 dB HL). Both NH (t12 = 0.15, p = 0.89) and HL 
(t18 = −2.02, p = 0.06) groups otherwise had symmetric PTA between 
ears. Both NH and HL groups had elevated hearing thresholds at 
very high frequencies (≥ 8,000 Hz), typical of age-related presbycusis 
in older adults. Besides hearing, the two groups were matched in 
age (NH: 66.2 ± 6.1 years, HL: 70.4 ± 4.9 years; t2.22 = −2.05, 
p = 0.052) and sex balance (NH: 5/8 M/F; HL: 11/8; Fisher’s exact test, 
p = 0.47). Age and hearing loss were not correlated (Pearson’s r = 0.29, 
p = 0.10), suggesting these aging factors were largely independent in 
our sample. 

2.2. QuickSiN test 

The Quick Speech-in-Noise (QuickSiN) test was measured 
listeners’ speech reception thresholds in noise (Killion et al., 2004). 
A list of six sentences with five keywords per sentence spoken by 
a female talker in a background of four-talker babble noise was 
heard by listeners during the test. Target sentences were presented at 
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70 dB sound pressure level (SPL) (binaurally) at signal-to-noise ratios 
(SNRs) decreasing from 25 dB (relatively easy) to 0 dB (somewhat 
diÿcult) in 5 dB steps. The number of keywords correctly recalled 
was logged, and a score was computed for each listener. The SNR-
loss score indexes the dierence between a listener’s SNR-50 (i.e., 
the SNR required to identify 50% of the keywords correctly) and the 
average SNR threshold for normal-hearing adults (i.e., 2 dB) (Killion 
et al., 2004). A higher score reflects poorer SiN perception. Each 
listener’s SNR-loss score was averaged from four lists of sentence 
presentations. In this study, NH listeners’ scores ranged from −0.25 
to 2.5 dB of SNR-loss (M = 1.1 dB, SD = 0.8 dB) while HL listeners’ 
scores were higher and more variable, ranging from −2.5 to 8.5 dB 
of SNR-loss (M = 2 dB, SD = 2.5 dB) [see Figure 1D in Bidelman 
et al. (2019)]. Indeed, although mean QuickSiN scores did not dier 
between groups [t2.35 = −1.43, p = 0.16], HL listeners showed more 
inter-subject variability compared to NH listeners [Equal variance 
test (two-sample F-test): F18,12 = 8.81, p = 0.0004]. 

2.3. EEG stimuli and task 

The stimuli and task are described fully in Bidelman et al. 
(2019) and illustrated here in Figure 1A. Three naturally produced 
English consonant-vowel phonemes (/ba/, /pa/, and /ta/), from the 
standardized UCLA version of the Nonsense Syllable Test (Dubno 
and Schaefer, 1992), were generated by a female talker. The duration 
of each phoneme was 100 ms and the average root mean square 
SPL of each phoneme matched. All three tokens had a common 
voice fundamental frequency (mean F0 = 150 Hz), first and second 
formants (F1 = 885, F2 = 1,389 Hz). The resulting stimulus-evoked 
response (i.e., FFR) predominantly originates from the subcortex 
(Brugge et al., 2009; Bidelman, 2018b) since the stimulus F0 is above 
the phase-locking limit of the cortical neurons and “cortical FFRs” 
(Coey et al., 2016; Bidelman, 2018b; Bidelman and Momtaz, 2021). 
Indeed, we have shown that these types of speech tokens with an 
F0 = 150 Hz elicit robust midbrain FFRs with no evidence of a cortical 
contribution [see Supplementary Figure 1 in Price and Bidelman 
(2021)]. Speech tokens were delivered binaurally to listeners in either 
clear (i.e., no noise) or noise-degraded conditions. A complete set 
of stimuli presented in each condition contained 3,000 /ba/, 3,000 
/pa/, and 210 /ta/ tokens (spread evenly over three blocks to allow 
for breaks). The interstimulus interval between tokens was randomly 
jittered within 95–155 ms (5 ms steps, uniform distribution). The 
/ba/ and /pa/ tokens were presented more frequently than the /ta/ 
token in a pseudo-random manner such that at least two frequent 
tokens intervened between infrequent tokens. The rare/ ta/ token was 
denoted as the target in which listeners were required to respond by 
pressing a button on the computer whenever they detected it. Both 
reaction time (RT) and detection accuracy (%) were recorded. For the 
noise-degraded condition, the same procedures as the clear condition 
were repeated, but the tokens were presented in an identical speech 
triplet mixed with eight talker noise babble (Killion et al., 2004) at 
a SNR of 10 dB. Six blocks (3 clear and 3 noise) were collected 
from each participant. Having the clear and noise conditions allowed 
us to compare behavioral performance in dierent backgrounds 
and evaluate the impact of noise on speech perception in NH vs. 
HL listeners, respectively. The task ensured listeners were actively 
engaged during speech perception and online EEG recording. Stimuli 
were controlled by a MATLAB program (The Mathworks, Inc., 
Natick, MA, USA) routed to a TDT RP2 interface (Tucker-Davis 

Technologies; Alachua, FL, USA) and delivered binaurally through 
insert earphones (ER-3; Etymotic Research; Elk Grove Village, IL, 
USA). The speech stimuli were presented at 75 dB SPL (noise at 65 dB 
SPL) with alternating polarity. 

2.4. EEG recording and preprocessing 

During the target speech detection task, neuroelectric activity was 
recorded from 32 channels at standard 10–20 electrode locations on 
the scalp (Oostenveld and Praamstra, 2001). Electrode impedances 
were ≤ 5 k. EEGs were digitized at 20 kHz using SynAmps 
RT amplifiers (Compumedics Neuroscan; Charlotte, NC, USA). 
After EEG acquisition, the data were processed using the “mne” 
package in Python 3.9.7. EEG data were re-referenced oine to the 
mastoids (TP9/10) for sensor (channel-level) analyses. For source 
analysis of brainstem FFRs, we used a common average reference 
before source transformation (detailed below). Responses were then 
filtered 100–1,000 Hz [finite impulse response (FIR) filters; hamming 
window with 0.02 dB passband ripple, 53 dB stopband attenuation, 
−6 dB cuto frequency, filter length = 661 samples/ 0.132 s] to 
isolate brainstem activity (Musacchia et al., 2008; Bidelman et al., 
2013). 

2.5. Derivation of source FFRs and cortical 
activities 

The derivation of source FFR waveforms and isolation of cortical 
activities are similar to the methods described in Lai et al. (2022) 
for young adults. The 32-channel sensor data were transformed 
into source space using a virtual source montage. The source 
montage comprised of a single regional source (i.e., current flow 
in x, y, z planes) positioned in the brainstem and midbrain (i.e., 
inferior colliculus) [details refer to Bidelman (2018b), Bidelman 
and Momtaz (2021), Price and Bidelman (2021)]. Source current 
waveforms (SWF) from the brainstem source were obtained using 
the formula: SWF = L−1 

× FFR, where L is the brainstem source 
leadfield matrix (size 3 × 64) and FFR is the 32-ch sensor data 
(64 × NSamples). This essentially applied a spatial filter to all 
electrodes that calculated their weighted contribution to the scalp-
recorded FFRs to estimate source activity within the midbrain 
in the x, y, and z directions (Scherg and Ebersole, 1994; Scherg 
et al., 2002). This model explains ∼90% of the scalp-recorded 
FFR (Bidelman et al., 2019; Price and Bidelman, 2021). Only the 
z-oriented SWF was used for further analysis (x and y SWFs 
were not analyzed) given the predominantly vertical orientation 
of current flow in the auditory midbrain pathways relative to the 
scalp [x- and y-orientations contribute little to the FFR (Bidelman, 
2018b)]. 

We isolated cortical α band activity from the EEG and used it 
as a running index of arousal state (high or low) during the target 
speech detection task. EEG at the Pz and Oz channels were filtered at 
8–12 Hz (FIR filters, −6 dB cuto frequency at 7 Hz and 13.5 Hz, filter 
length = 8,251 samples/1.65 s) and averaged (i.e., equivalent to POz) 
to obtain cortical α-band activity at a posterior scalp region. Filtered α 
activities were epoched with a time window of 195 ms (−50 to 145 ms 
in which 0 ms corresponded to the onset of a /ba/ or /pa/ token) 
to capture approximately 1–2 cycles of α band. This epoch window 
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FIGURE 1 

Target speech detection performance correlates with average response time collected during an active EEG task. (A) Prior to EEG recordings, all 
participants’ pure-tone audiometry tested at 250–8,000 Hz were obtained and speech-in-noise perception was assessed with QuickSiN. Subsequently, 
speech-EEGs to consonant-vowel phonemes (/ba/, /pa/, and /ta/) were recorded under clear or noisy (+10 dB SNR) backgrounds while participants 
actively engaged in the target speech detection task. (B) Correct responses to target speech (i.e., /ta/) are predictive of reaction times in quite (clear) but 
not noisy backgrounds. (C) When participants were divided into normal (NH) and hearing loss (HL) groups, the correlation of speech detection accuracy 
and reaction time obtained in quiet backgrounds is significant only in the HL group. r = Spearman’s correlation; shaded area = 95% CI of the regression 
line. 

encapsulated the entirety of the evoked FFR within the immediate 
trial with no spillover from the preceding or subsequent trial(s). 
Infrequent /ta/ tokens were excluded from the analysis due to their 
limited number. The root mean square (RMS) amplitude of single 
trial α activity was computed to quantify cortical arousal level over 
the duration of the target speech detection task. We then normalized 
RMS values to each run’s median of RMS values, respectively. Next, 
the trial-wise normalized α RMS distribution was visualized using a 
histogram. We categorized trials of each participant per condition 
falling within the 0–35th percentile as “low α” power and those falling 
within the 65–100th percentile as “high α” power. This categorization 
was used because it provided ∼2,100 trials for each low or high α 
power in each participant per condition, which is reasonable to obtain 
an average FFR with a robust SNR (i.e., ≥ 3 dB SNR) (Bidelman, 
2018a). More detailed information on this methodology can be found 
in Lai et al. (2022) (see their Figure 2). We similarly measured cortical 
activity in another frequency band (e.g., β band; 18–22 Hz) from the 
same location (i.e., POz β) and α band from a dierent electrode 
site (i.e., Fz α). These control analyses allowed us to ensure that the 
observed changes in speech-evoked FFRs were specifically associated 
with cortical arousal level (indexed by α power) rather than general 
fluctuations in the EEG, per se. 

2.6. Analysis of brainstem FFRs 

We categorized source FFRs based on whether α amplitude in 
the same epoch was either high or low power, thus deriving FFRs 
according to the trial-by-trial cortical state. Source FFR waveforms 
(from the z-orientated dipole) were averaged for each α category 
and noise condition per participant. Subsequently, we analyzed the 
steady-state portion (10–100 ms) of FFR waveforms using the FFT 
(Blackman window; 11.1 Hz frequency resolution) to capture the 
spectral composition of the response. F0 amplitude was measured 

as the peak spectral maximum within an 11 Hz bin centered around 
150 Hz (i.e., F0 of the stimuli). To compare FFR F0 amplitudes during 
low vs. high α power, a normalized (within-subject) F0 ratio was 
calculated as follows: 

F0 ratio = 
F0amphighα 

F0amplowα 
(1) 

where F0 ratios > 1 indicate stronger brainstem FFRs during states of 
high cortical α power and F0 ratios < 1 indicate stronger FFRs during 
states of low cortical α power (Lai et al., 2022). 

2.7. Statistical analysis 

We used mixed-model ANOVAs to compare brainstem F0 
ratios among the clear vs. noise condition, and NH vs. HL 
group. Multiple pairwise comparisons (Mann-Whitney U test with 
Bonferonni corrections) between the NH and HL groups were 
performed using the “pingouin” package in Python. One sample 
t-tests (“scipy” package in Python) were also used to evaluate 
whether FFR F0 ratios were diered significantly from 1 (and 
thereby indicated the significance of α modulation). Wilcoxon 
signed-rank test was used when comparing raw F0 amplitudes 
at low vs. high α power within participants for each SNR 
condition and hearing group. To compare dierences in α RMS 
values of all participants across (clear vs. noise) conditions, a 
non-parametric test was required because α RMS values were 
not normally distributed. We performed posthocConover’s test 
(“scikit_posthocs” package in Python), which is a non-parametric 
pairwise test, with Bonferroni adjustment. To assess dierences 
in raw F0 amplitudes (log-transformed) across factors for NH 
and HL groups, we first performed a 2 × 2 × 2 (SNR × α 
power × hearing group) mixed model (participants = random 
factor) ANOVA (“lme4” package in Rstudio). Following a significant 
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FIGURE 2 

Normal hearing (NH) participants have a higher parieto-occipital α power and their brainstem speech processing is more strongly modulated by α band 
in clear backgrounds. (A) Average α waveform of low- and high-power trials plotted from a representative NH participant. (B) Frequency spectra of the 
steady state (10–100 ms) portion of low and high α brainstem FFRs from the same participant panel (A). Note the distinct response at ∼150 Hz, 
corresponding to the voice pitch. (C) Root-mean-square (RMS) values of both low and high α of the NH group were significantly higher than the HL 
group. #p < 0.01 (Conover’s test, non-parametric pairwise test, with Bonferroni adjustment). (D) FFR F0 ratios during low and high α trials. FFR F0 ratios 
were higher in the NH vs. HL group (Mann-Whitney U test) in the clear condition. Bars marked (< 0.05) are significantly larger than 1 (1-sample t-test) 
indicating enhancement of the FFR with changes in cortical α. (E) Grand average FFR F0 amplitudes as a function of SNR (clear vs. noise), α power (low 
vs. high), and group (NH vs. HL). Error bars = ± s.e.m., ∗ p < 0.05 (Wilcoxon signed-rank test). 

interaction, we ran separate 2 × 2 (α power × SNR) ANOVAs 
with random eects (subjects were considered randomly selected 

from a larger population) for the NH and HL groups, respectively. 
Initial diagnostics were performed using residual and Q-Q plots to 

assess the heteroscedasticity and normality of data. F0 amplitudes 
were log-transformed to improve normality and homogeneity of 
variance assumptions. Eect sizes are reported as ηp 

2 . To check if 
low or high α FFR F0 amplitudes were associated with behavioral 
performance (i.e., QuickSiN, PTA, percent correct, and RTs) by 

pooling all NH and HL participants, we performed Spearman’s 
correlations (“scipy” package in Python) to test their pairwise 

correlations of brain and behavior measures. Spearman’s correlation 

was used because these measures were found to be not normally 

distributed (p < 0.05) from the test of normality using the Shapiro-
Wilk test. 

2.8. Classification of performance level 
from FFR frequency spectra via machine 
learning 

All participants’ performance in the clear condition was 
categorized into three levels (poor, average, and good) based 
on their percent correct of /ta/ detections. Participants with 
poor performance had percent correct scores ≤ 30th-percentile 
while good-performance participants had scores ≥ 70th-percentile. 
Subsequently, we classified poor- and good-performing participants 
using frequency spectra of their low or high α FFRs and a support 
vector machine (SVM) classifier (kernel = radius basis function, 
C = 1,000, gamma = scale) in the “scikit-learn” package in python. 
Due to the limitation in sample size (32 total observations), we 
were only able to perform a two-group rather than three-group 
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machine learning (ML) classification. There were ten participants in 
each poor- or good-performance category, which provided a total of 
twenty participants’ frequency spectra to be used as data input for 
SVM. Frequency spectra were obtained from the FFT of average FFR 
waveforms (10 to 100 ms steady state portion) across ∼2,100 trials 
of low or high α FFRs per participant. The absolute amplitudes of 
frequency spectra, which consisted of 226 amplitude-by-frequency 
points, were the input features; performance level (i.e., poor vs. 
good) served as the ground truth class labels. The ML classification 
procedures on FFRs were similar to those described by Xie et al. 
(2019) and Lai et al. (2022). During one iteration of training and 
testing, a four-fold cross-validation approach was used to train and 
evaluate the performance of the SVM classifier to obtain a mean 
classification accuracy [Figure 1 of Xie et al. (2019)]. In this process, a 
4-fold stratification was performed to randomly and equally divide 
participants into 4 subgroups with 5 unique participants (almost 
similar number of poor- and good-performing participants) in each 
subgroup. Three of the 4 subgroups were selected as the training 
data while the remaining subgroup was used as the hold-out testing 
data. To mitigate the problem of imbalanced participant numbers in 
the two classes of the training set, we randomly over-sampled the 
minority class using the “imblearn” package in python. These steps 
were repeated within each iteration so that each subgroup was held-
out as the test data whereas the other three subgroups were used to 
train the SVM classifier. Mean classification accuracy of poor- vs. 
good-performance was calculated across cross-validated iterations. 
We performed a total of N = 5,000 iterations to examine group 
classification for low vs. high α power FFRs. 

To evaluate if the classifier accuracy (mean of N = 5,000 
iterations) was statistically significant, we randomly shued the 
226 data points of frequency spectra in each participant, and the 
same training and testing procedures described above were repeated 
to derive a null distribution of classification accuracies. We then 
calculated the p-value to determine the statistical significance of 
"true" classifier performance using the formula described in Phipson 
and Smyth (2010): p = (a + 1)/(n + 1), where a is the number 
of classification accuracies from the null distribution that exceeds 
the median of the actual distribution of classification accuracies 
and n is the total number of classification accuracies from the null 
distribution. 

2.9. Fitting linear regression models with 
brain and behavior measures 

To compare the changes in low α FFR F0 amplitudes as behavior 
performance changed in the NH and HL groups, we fitted linear 
regression models for pooled SNR, clear and noise conditions, 
respectively, by using behavior performance and the group as main 
factors, their interaction factor, and without or with age as a covariate. 

Y = β0 + β1 · X + β2 · group + β3 · X · group (2) 

Y = β0 + β1 · X + β2 · group + β3 · X · group + β4 · age (3) 

Y represents FFR F0 amplitudes during low α power, X is one of 
the behavior measures (QuickSiN, PTA, percent correct, or RTs), 
and the group is the dummy variable for NH (group = 0) and HL 

(group = 1). Meanwhile, β0 is a constant and β1, β2, β3 or β4 is the 
coeÿcient or slope for the respective variable. Age was added as a 
covariate in Eq. (3) to confirm that the observed eects were not 
driven by participants’ age, per se. After fitting regression models, we 
checked assumptions for the normality of residuals, homoscedasticity 
of residuals and linearity of the models. For residual normality, 
we tested if model residuals were normally distributed using the 
Shapiro-Wilk test and visualized the Q-Q plots of the residuals. For 
residual homoscedasticity, we used Breusch-Pagan and Goldfeld-
Quandt tests. For model linearity, we visualized residual distributions 
by plotting residuals vs. predicted values. Result interpretation was 
then carried out after confirming the above three assumptions. 

The fitted linear regression models allowed us to study if the 
slopes (i.e., the change of FFR amplitudes) of the NH group were 
significant as well as if the slopes of the HL group were significantly 
dierent from the NH group. In the NH group, i.e., group = 0, Eq. (2) 
can be written as Y = β0 + β1·X and β1 is the slope for the NH group. 
In contrast, in the HL group, i.e., group = 1, Eq. (2) can be written as 
Y = β0 + β1·X + β2 + β3·X = (β0 + β2) + (β1 + β3)X, where (β1 + β3) 
is the slope for the HL group and β3 represents the dierence in slope 
between the HL and NH group. 

3. Results 

3.1. Behavior performance of target 
speech detection 

Behavioral responses during the EEG task (percent correct /ta/ 
detections vs. RTs) showed a negative correlation for the clear but 
not noise condition (Spearman’s r = −0.45, p = 0.01, Figure 1B); 
participants with slower response speeds showed poorer speech 
detection accuracies. This is consistent with previous findings 
showing negative associations between hit responses and RTs in 
younger listeners (e.g., Lai et al., 2022). When separated into the 
NH and HL groups, we found a negative relationship between 
behavioral hit responses and decision speeds but only in the HL group 
(Figure 1C). 

3.2. Cortical α band and brainstem 
speech-FFRs 

Dierences in cortical α-band amplitudes during low vs. high α 
states were prominent at the single participant (Figure 2A) as well 
as group level (Figure 2C). Spectral dierences in the corresponding 
brainstem FFR for these same low vs. high cortical trials were also 
notable (Figure 2B). Cortical α (both low and high levels) was 
overall higher in the NH listeners (p < 0.01, non-parametric post hoc 
Conover’s test with Bonferroni adjustment) but both groups showed 
clear separability of “low” vs. “high” α states during the speech 
detection task. 

In response to clear speech (Figure 2D), brainstem F0 ratios 
(indexing cortical α-related FFR enhancement) in the NH group were 
significantly higher than 1 (t12 = 2.64, p = 0.02, 1-sample t-test) and 
higher than the F0 ratios in the HL group (U = 192, p = 0.01, Mann-
Whitney U test). In response to the noise-degraded speech, this 
cortical-FFR enhancement was observed in the HL group (t18 = 2.67, 
p = 0.02, 1-sample t-test), probably due to compensation reasons, but 

Frontiers in Neuroscience 06 frontiersin.org 

https://doi.org/10.3389/fnins.2023.1075368
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1075368 January 28, 2023 Time: 14:41 # 7

Lai et al. 10.3389/fnins.2023.1075368 

it was not significantly dierent from the FFR enhancement observed 
in the NH group. Repeating the same analysis for both controls (POz 
β and Fz α) revealed no dierence (p = 0.19 and 0.053) in F0 ratios for 
the NH vs. HL group (Supplementary Figure 1), indicating cortical 
modulation of the FFR was restricted to POz α. 

A 3-way mixed-model ANOVA performed on log F0 amplitudes 
revealed a significant SNR × α power × group interaction 
(F1,96 = 9.5, p = 0.003, ηp 

2 = 0.09) (Figure 2E). To make sense of this 
complex interaction, we performed separate 2-way (SNR x α power) 
mixed-model ANOVAs by hearing group. The SNR × α power 
interaction was significant in both the NH (F1,39 = 5.17, p = 0.03, 
ηp 

2 = 0.12) as well as the HL group (F1,57 = 4.11, p = 0.05, ηp 
2 = 0.07). 

Though the comparison of eect sizes suggests this interaction was 
stronger in NH listeners, the interaction was distinct in direction 
compared to the HL group. In the NH group, FFR F0 amplitudes were 
significantly higher (W = 17, p = 0.048, Wilcoxon signed-rank test) 
during high α power for clear speech. This pattern was dampened 
and reversed in the HL group. 

3.3. Brain-behavior relations in both the 
NH and HL groups 

We next assessed associations between low or high α FFR F0 
amplitudes and behavioral performance (QuickSiN, PTA, percent 
correct, and RTs) by performing Spearman’s correlation analyses. 
The positive association between F0 amplitudes and percent correct 
scores was significant at low but not high α power (Spearman’s 
r = 0.3, p = 0.02, Figure 3A), while the associations between F0 
amplitudes (either during low or high α power) and other behavior 
measures were not significant (all p-values > 0.05). To further assess 
if FFRs during low or high α power in either clear or noise condition 
were more predictive of behavioral responses, we performed ML 
classification of percent correct scores (i.e., perceptual performance 
level) into poor (≤ 30th of overall percent correct scores) or good 
(≥ 70th of overall percent correct scores) using participants’ FFR 
frequency spectra as input for the SVM classifiers. In the clear 
condition (Figure 3B), the classifier had a higher accuracy median 
(58%) in decoding participants’ perceptual performance level using 
low α FFRs compared to the accuracy median (32%) when using high 
α FFRs. In contrast, in the noise condition (Figure 3C), classification 
accuracies did not dier between low or high α FFRs nor where 
they above the null distribution. These results provide evidence that 
adding background noise disrupted the relationship of low α FFRs 
with behavioral measures potentially as a result of compromising the 
SNR of the neural responses. 

3.4. Comparison of brain-behavior 
relations in the NH and HL groups 

The aforementioned analyses showed that during high arousal 
states (i.e., with low α power), FFRs have a stronger relationship 
with behavior compared to low arousal states, especially in the clear 
condition, when pooling the NH and HL groups. Hence, we studied 
the changes in low α FFR amplitudes with behavioral performance 
(QuickSiN, PTA, percent correct, and RTs) systematically by fitting 
linear regression models [Eq. (2, 3)]. We observed significant 
coeÿcients or slopes (β) when PTA was used as X in Eq. (2). For 
both the clear and noise-degraded speech, we found a significant 

negative slope between low α F0 amplitudes and PTAs in the NH 
group (β1 = −4.82 × 10−9 , p = 0.01, Figure 4A) but the slope of 
the HL group was not significantly dierent from the NH group 
(β3 = 3.77 × 10−9 , p = 0.055). This indicates that even with clinically 
“normal” hearing, participants with slightly poorer thresholds have 
smaller FFRs during low α states. When separating the data by SNR, 
we observed similar trends of low α FFR amplitudes decreased with 
increased PTA in the NH and HL groups for clear speech (Figure 4B) 
though the slopes were not significant (β1 = −3.11 × 10−9 , p = 0.179; 
β3 = 7.7 × 10−10 , p = 0.319). For noisy speech (Figure 4C), we found 
that low α FFR amplitudes decreased significantly with increased 
PTA in the NH group (β1 = −6.53 × 10−9 , p = 0.01) and the slope 
of the HL group was also significantly dierent (β3 = 6.77 × 10−9 , 
p = 0.02) from the NH group. The fitted regression lines in Figure 4C 
showed that low α FFR amplitudes were generally diminished by 
noise in the HL group. Repeating the same analysis with age as 
covariate in Eq. (3) provided similar results. For both the clear and 
noise-degraded speech, β1 was significant (−4.58 × 10−9 , p = 0.014) 
but not β3 (3.45 × 10−9 , p = 0.082). For clear speech, none was 
significant (β1 = −2.83 × 10−9 , p = 0.224; β3 = 3.91 × 10−10 , 
p = 0.874). For noisy speech, both β1 (−6.34 × 10−9 , p = 0.019) and β3 

(6.52 × 10−9 , p = 0.024) were significant. This helps rule out age as a 
confounding factor and suggests that hearing loss drove the observed 
group dierences. 

4. Discussion 

Previous neuroimaging work reveals weaker functional 
connectivity between the brainstem and cortex in older listeners with 
mild hearing loss compared to older adults with normal hearing for 
their age, and this interplay robustly predicts their SiN perceptual 
performance (Bidelman et al., 2019). Adding to these findings, we 
show the existence of active and dynamic modulation of brainstem 
speech processing in NH older listeners, which was dependent on 
online changes in listeners’ cortical state. This active and dynamic 
cortical-brainstem modulation, however, is diminished when 
processing speech in noise and in older adults with HL. Compared 
to NH listeners, HL listeners showed weaker parieto-occipital α 
power but those with minimal hearing loss (i.e., smaller PTA) 
had unusually large FFRs during low α states (gray dashed box in 
Figure 4B). Although FFRs were smaller during low α power, they 
were predictive of perceptual speech measures (Figure 3A) when 
pooling NH and HL participants and especially for clear speech 
(Figure 3B). Collectively, our findings suggest that (i) increased F0 
ratios were disrupted by noise in the NH group and diminished in 
the HL group for clear speech; (ii) FFRs during low α power (i.e., high 
cortical arousal states) have smaller F0 amplitudes but their spectra 
are more predictive of behavioral performance, (iii) decreased low α 
FFRs with increased PTA in both NH and HL participants, and (iv) 
increased low α FFRs in older adults with mild hearing loss for clear 
speech suggesting an increase in central gain. 

4.1. Effects of age on cortical α power and 
cortical modulation of brainstem speech 
processing 

Cortical α indexes states of wakefulness and arousal (Pfurtscheller 
et al., 1996; Aftanas et al., 2002; Uusberg et al., 2013). Still, there is also 
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FIGURE 3 

Low α frequency-following responses (FFRs) better predict behavioral performance than high α FFRs during clear speech perception when pooling 
across background conditions. (A) Low α FFRs correlated positively with percent correct of speech target detection. r = Spearman’s correlation. Shaded 
area = 95% CI of the regression line. (B) For clear speech, support vector machine (SVM) classifier accuracy was significantly better using low α (but not 
high α) FFR frequency spectra to classify participants perceptual performance level (i.e., poor vs. good) compared to the null classification accuracies. 
(C) For noise-degraded speech, classification accuracies were similar when using low or high α FFR spectra and did not differ from the null classification 
accuracies. Upper/lower ticks = max/min; center tick = medians. ∗ p < 0.01. 

FIGURE 4 

Hearing loss is associated with smaller speech-frequency-following responses (FFR) amplitude under low cortical α (i.e., high arousal) states. (A) When 
pooling SNRs, the decrease (slope) of low α FFR F0 amplitudes as a function of pure-tone averages (PTA) in the NH group was significant 
(β1 = –4.82 × 10−9 , p = 0.01) and the slope of the HL group was not significantly different from the normal-hearing (NH) group. (B) For clear speech, 
similar trends of low α FFR amplitudes decreased with increased PTA were observed in the NH and HL groups though the slopes were not significant. The 
gray dashed box marks the overlapping PTA region for both groups. (C) For noise-degraded speech, the slope of low α FFR amplitudes decreased with 
increased PTA was significant (β1 = –6.53 × 10−9 , p = 0.01) in the NH group and the slope of the HL group was significantly different (β3 = 6.77 × 10−9 , 
p = 0.02) from the NH group. The fitted regression lines showed that low α FFR amplitudes were generally diminished by noise in the HL group. Shaded 
area = 95% CI of the regression line. 
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evidence showing that α power may vary or index mind wandering 
during cognitive tasks (Compton et al., 2019; Maillet et al., 2020). 
Calculating the span length of low or high α trials for each listener 
showed averages of ∼ 1.7 trials in both hearing groups, equating 
to several hundred milliseconds during our task. The relative speed 
of these fluctuations suggests that the α-modulations observed here 
are unlikely related to mind wandering per se, which presumably 
develops over longer time courses [tens of seconds (Pelagatti et al., 
2020)]. Instead, we infer low α power tracks a high arousal state 
while high α power reflects task focus but in a state of wakeful 
relaxation. Induced α activity is crucial for SiN perception as it might 
suppresses irrelevant information like noise to aid target speech 
processing (Strauß et al., 2014). In our previous study conducted 
on younger listeners (18–35 years) using similar EEG tasks, we 
observed larger α power to noise-degraded compared to a clear 
speech during the active engagement [see Figure 2F in Lai et al. 
(2022)]. However, here in both NH and HL older adults, we do not 
find this same noise-related α eect. In general, α power was larger 
in NH than in HL older listeners (Figure 2C). We also observed that 
high α RMS values in young NH listeners (Figure 2F in Lai et al., 
2022) had a larger range (0.1–0.9 µV) than NH older adults (0.1– 
0.28 µV). This observation advocates a reduction of α power with 
aging which has also been shown in other studies (Babiloni et al., 
2006; Purdon et al., 2015). Decreased α activity is also related to 
declines in cognitive functions with increasing age (Klimesch, 1997, 
1999). 

More critically, we demonstrate the presence of dynamic and 
online modulation of brainstem speech encoding by fluctuations in 
cortical α state in older NH adults. When comparing the observations 
across ages at similar acoustic backgrounds, they are fundamentally 
dierent from those observed in younger, normal-hearing listeners 
(cf. Lai et al., 2022). In younger listeners, lower cortical α states 
positively correlate with smaller FFRs during SiN perception (Lai 
et al., 2022). Furthermore, low-α-indexed FFRs recorded in noisy 
backgrounds are predictive of behavioral RTs for rapid speech 
detection and have higher accuracies in token classification (Lai 
et al., 2022). Here, unlike younger listeners which require more 
diÿcult perceptual tasks (i.e., SiN perception) to tax the system 
and reveal eects of cortical arousal state on brainstem FFRs, we 
observed cortical modulation of FFRs in NH older adults during the 
perception of clear speech (Figures 2D, E). Moreover, low-α-indexed 
FFRs associated more with behavior [speech detection (Figure 3) and 
PTAs (Figure 4)] than high-α-indexed FFRs. Contrastively, in noise, 
low α and high α FFR amplitudes were not classifiable in terms of 
perceptual performance level. Taken together, the pattern of cortical-
brainstem interactions in speech processing we found here in older 
NH listeners under clear backgrounds appears similar to what is 
found in younger listeners under challenging listening environments 
(cf. Lai et al., 2022). This indicates that aging might alter cross-talk 
between functional levels of the auditory system under challenging 
listening conditions as a means of compensatory processing. Similar 
maladaptive plasticity has been previously observed at higher cortical 
levels where frontal brain regions are more strongly engaged to 
aid auditory-sensory coding in the superior temporal gyrus (Price 
et al., 2019). This further suggests the presence of age-related deficits 
in top-down modulation of brainstem speech processing by the 
cortex and provides an explanation for why older listeners find 
it more exhausting to participate in cocktail party-like listening 
situations compared to younger listeners (Pichora-Fuller et al., 
2017). 

4.2. Effects of hearing loss on cortical α 
power and cortical modulation of 
brainstem speech processing 

Compared to the NH group, we observed decreases in parieto-
occipital α power in the HL group in both SNR conditions 
(Figure 2C). Acoustic signal detection especially in complex settings 
is found to increase working memory load (Shinn-Cunningham and 
Best, 2008) leading to enhanced power of α oscillations (Jensen et al., 
2002). However, the neural mechanisms of working memory are 
aected by auditory degradation or hearing loss. Lower α power 
is reported in listeners with moderate hearing-loss across the age 
spectrum because they reach a ceiling level where no additional 
working memory resources can be recruited leading to decreased α 
power (Petersen et al., 2015). Moreover, PTA correlates negatively 
with pre-stimulus α power in older listeners (Alhanbali et al., 2021). 
These findings are partly concordant with our data since we found 
lower α power (during stimuli) in older listeners with mild to 
moderate hearing loss. Furthermore, in the HL group, we found no 
cortical-related enhancements of FFRs (i.e., F0 ratio ≈1) for clear 
speech, and responses were not dierent from the NH group in the 
noise condition though F0 ratio was > 1 (Figure 2D). The interaction 
eect of SNR × α power was also distinct in direction between 
hearing groups. This finding implies that modulation of brainstem 
speech processing by cortical α state is altered in older listeners 
with mild hearing loss for both clear and noise-degraded speech 
processing. 

In addition to parieto-occipital α power, trends of low-α-indexed 
FFRs to clear speech decreased with increased PTAs were observed 
in NH and HL listeners (Figure 4B) and the slope of decrease was 
significant for noise-degraded speech in NH listeners (Figure 4C). 
The reduction in low α FFRs with poorer PTAs is probably related to 
the decrease in peripheral hearing ability. However, when comparing 
across groups at a comparable hearing loss (PTA = 15–22 dB HL), we 
found enhanced FFR amplitudes in HL listeners (gray dashed box in 
Figure 4B). Speculatively, this could indicate an increase in central 
gain, probably related to high-frequency (> 4 kHz) hearing loss in 
the HL group [our NH listeners had normal audiometric thresholds 
up to 4 kHz, see Figure 1A in Bidelman et al. (2019)]. The average 
4 kHz threshold of the NH group was ∼20 dB HL but it was ∼40 dB 
HL in the HL group. Similar central gain compensation secondary to 
peripheral hearing loss has been observed previously in both animal 
and human neuroimaging studies (Bidelman et al., 2014; Chambers 
et al., 2016). These phenomena were completely collapsed by noise in 
the HL group where low α FFRs were relatively smaller in most HL 
listeners (Figure 4C). 

4.3. Association of brainstem speech 
processing during high arousal states with 
behaviors 

Cortical α oscillations are used as a neural proxy of arousal 
(Pivik and Harman, 1995; Lai et al., 2022) and they were reported 
to play a significant role in functionally inhibiting the processing of 
task-irrelevant information (Jensen and Mazaheri, 2010; Foxe and 
Snyder, 2011). In our speech detection task, /ba/ and /pa/ tokens were 
the task-relevant distractors while /ta/ was the task-relevant target. 
Similar to the methods in Lai et al. (2022), we measured FFRs evoked 
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by /ba/ and /pa/ as there were insuÿcient counts (i.e., 210) of /ta/ 
token in each condition to provide reasonable FFRs. During low or 
decreased α power (i.e., high arousal state), NH listeners may have 
attended more to the target (/ta/) but less to the distractors (/ba/ and 
/pa/). Thus, FFRs to /ta/ were expected to increase while FFRs to /ba/ 
and /pa/ decrease. Whereas during high α power (i.e., low arousal 
state), responses to /ba/ and /pa/ were likely not inhibited because 
they were not task-irrelevant noise. Decreased α power was reported 
to associate with increased neural firing to attended stimuli (Haegens 
et al., 2011) and improved behavioral performance (Kelly et al., 2009; 
Gould et al., 2011; Haegens et al., 2011). 

In younger listeners and under noisy backgrounds, we previously 
showed that neural decoding applied to low α FFRs oered higher 
accuracies in token classification as compared to high α FFRs [see 
Figure 5 in Lai et al. (2022)]. In this study, under no background 
noise, we observed that frequency spectra of low α FFR had better 
classification accuracies for perceptual performance level than high α 
FFR. These observations suggest that frequency spectra of low α FFRs 
were more robust in carrying information about the acoustic speech 
stimuli although their F0 amplitudes were smaller. For example, a 
better coding of harmonics or formants in the spectra renders the 
FFRs to be more representative of the acoustic speech waveforms 
and thus more predictive of perceptual performance. On the other 
hand, high α FFRs had larger F0 amplitudes, but the whole spectra 
of FFRs were noisier and contained less information about the 
acoustic speech. Taken together, better speech token discrimination 
is consistently observed in FFRs during high arousal states in both 
younger and older adults. Furthermore, low α FFRs were also 
observed to be decreased as PTA increased, especially in the NH 
group for noise-degraded speech. These observations suggested that 
brainstem FFRs during high arousal states have a strong association 
with behavior perception. 

5. Conclusion 

Collectively, our study reveals age-related hearing loss not 
only reduces cortical α power but dierentially alters its dynamic 
relationship with subcortical speech processing. This cortical-
brainstem modulation is especially prominent in the presence of 
noise and in listeners with age-related hearing loss. While brainstem 
speech processing is actively modulated by cortical arousal state 
in normal-hearing older adults for clear speech, this modulation 
is disrupted by the addition of background talker babble and 
diminished by hearing loss even in clear backgrounds. Speech-FFRs 
during low α states also oer a higher fidelity representation of 
the acoustic speech signature and are more predictive of perceptual 
performance than FFRs yoked to states of high cortical α. Enhanced 
FFRs in older adults with near-normal hearing (i.e., very mild hearing 
loss) suggest the presence of increased central gain compensation for 
reduced auditory input (Bidelman et al., 2014; Chambers et al., 2016). 
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