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a b s t r a c t  

Behavioral studies reveal listeners exploit intrinsic differences in voice fundamental frequency (F0) to 
segregate concurrent speech soundsdthe so-called “F0-benefit.” More favorable signal-to-noise ratio 
(SNR) in the environment, an extrinsic acoustic factor, similarly benefits the parsing of simultaneous 
speech. Here, we examined the neurobiological substrates of these two cues in the perceptual 
segregation of concurrent speech mixtures. We recorded event-related brain potentials (ERPs) while 
listeners performed a speeded double-vowel identification task. Listeners heard two concurrent 
vowels whose F0 differed by zero or four semitones presented in either clean (no noise) or noise-
degraded (þ5 dB SNR) conditions. Behaviorally, listeners were more accurate in correctly identi-
fying both vowels for larger F0 separations but F0-benefit was more pronounced at more favorable 
SNRs (i.e., pitch  SNR interaction). Analysis of the ERPs revealed that only the P2 wave (~200 ms) 
showed a similar F0 x SNR interaction as behavior and was correlated with listeners' perceptual F0-
benefit. Neural classifiers applied to the ERPs further suggested that speech sounds are segregated 
neurally within 200 ms based on SNR whereas segregation based on pitch occurs later in time (400 
e700 ms). The earlier timing of extrinsic SNR compared to intrinsic F0-based segregation implies that 
the cortical extraction of speech from noise is more efficient than differentiating speech based on 
pitch cues alone, which may recruit additional cortical processes. Findings indicate that noise and 
pitch differences interact relatively early in cerebral cortex and that the brain arrives at the identities 
of concurrent speech mixtures as early as ~200 ms. 

© 2017 Elsevier B.V. All rights reserved. 
1. Introduction 

To properly analyze the auditory scene and endure the “cocktail 
party,” listeners must exploit various acoustic cues to segregate 
concurrent sounds. The process of auditory streaming is thought 
to rely on several acoustic principles including (among other fac-
tors) the degree of (in)harmonicity (Alain et al., 2001; Bidelman 
and Alain, 2015a), temporal coherence/(a)synchrony (Van 
Noorden, 1975), spectral content, and spatial configuration be-
tween multiple auditory objects (for reviews, see Bidet-Caulet and 
 Sciences & Disorders, Uni-
, TN, 38152, USA. 
idelman). 
Bertrand, 2009; Bregman, 1990; Oxenham, 2008; Shamma et al., 
2011). In particular, differences in the fundamental frequency 
(F0) between two or more sounds (i.e., pitch cues) represents one 
of the more robust acoustic factors for perceptual segregation. 
Auditory stimuli containing the same F0 are perceived as a single 
perceptual object whereas multiple F0s tend to promote hearing 
multiple sources. F0-based segregation is thought to reflect the 
grouping of spectral components that originate from a common 
target signal and the fact that F0 changes allow the auditory 
system to track time-varying properties of the voice over time 
(Assmann, 1996). 

To probe the perceptual segregation of concurrent speech mix-
tures, behavioral studies have generally employed synthetic 
double-vowel stimuli (Assmann and Summerfield, 1989; Assmann 
and Summerfield, 1990; de Cheveign e et al., 1997a; de Cheveign e
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et al., 1997b; Parsons, 1976). In these paradigms, listeners hear two 
simultaneous vowels and are asked to correctly identify both to-
kens. Findings of these studies show that speech identification 
accuracy improves with increasing pitch differences between 
vowels for F0 separations from 0 to about 4 semitones (STs)dan 
improvement referred to as the “F0-benefit” (Arehart et al., 1997; 
Chintanpalli and Heinz, 2013; Chintanpalli et al., 2016). From pre-
vious psychophysical studies, it is clear that listeners exploit 
intrinsic F0 differences to successfully segregate competing speech. 
Unfortunately, the neurobiological mechanisms underlying the 
separation and subsequent identification of overlapping speech 
remains poorly understood. 

Segregation of speech and non-speech signals is thought to 
reflect a complex, distributed neural network involving both 
subcortical and cortical brain regions (Alain et al., 2005b; 
Bidelman and Alain, 2015a; Dyson and Alain, 2004; Palmer, 
1990; Sinex et al., 2002). In humans, functional magnetic reso-
nance imaging (fMRI) implicates a left thalamo-cortical network 
including thalamus, bilateral superior temporal gyrus, and left 
anterior temporal lobe in successful double-vowel segregation 
(Alain et al., 2005b). Event-related brain potentials (ERPs) have 
further delineated the time course of concurrent speech pro-
cessing, with modulations in neural activity ~150e200 ms and 
350e400 ms after sound onset (Alain  et al., 2005a, 2007;  Reinke
et al., 2003)1. The sensitivity of neural responses in both an early 
and late time frame supports the notion of a multistage model of 
concurrent speech processing in which the spectral signatures of 
each vowel are extracted automatically in early auditory sensory 
cortex (or even subcotically; Meddis and Hewitt, 1992; Palmer, 
1990) and then matched against their respective phonetic tem-
plates in memory shortly thereafter (Alain et al., 2005a; 
Bregman, 1990). This proposition is further bolstered by 
perceptual learning studies, which show that more successful 
learners in double-vowel tasks show enhancements in their ERPs 
in the form of decreased latencies and increased amplitudes of 
the N1-P2 complex (enhanced sensory coding) and larger slow 
wave activity around ~400 ms (more efficient cognitive pro-
cessing/memory template matching) (Alain et al., 2007, 2015; 
Reinke et al., 2003). 

Another important issue in understanding concurrent speech 
segregation is the effect of extrinsic acoustic interferences (e.g., 
external noise). Real-world listening environments (e.g., class-
rooms, cocktail parties, restaurants) nearly always contain some 
degree of background interference (Helfer and Wilber, 1990) and 
listeners must parse noise from target signals to achieve robust 
understanding. Additive noise tends to obscure less intense por-
tions of the speech signal, reduce its signal-to-noise ratio (SNR), 
and prevent audible access to salient speech cues normally 
exploited for comprehension (e.g., temporal envelope; Bidelman, 
2016; Shannon et al., 1995; Swaminathan and Heinz, 2012). In 
terms of the neural substrates of degraded speech processing, ERP 
studies demonstrate that noise weakens and prolongs the cortical 
encoding of (isolated) speech sounds dependent on signal SNR 
(Bidelman and Howell, 2016; Billings et al., 2009, 2010). Degraded 
speech perception is thought to reflect a fronto-temporal speech 
network involving a close interplay between primary auditory 
sensory areas and inferior frontal brain regions (Bidelman and 
1 Though our focus is on concurrent vowel identification paradigms (Alain et al., 
2005a; Reinke et al., 2003), it should be noted that the time course of concurrent 
sound segregation depends on the stimulus paradigm. Less perceptually taxing 
sounds including nonspeech harmonic tone complexes (Alain et al., 2001; Bidelman 
and Alain, 2015a) and competing streams of talkers (Ding and Simon, 2012) can 
elicit neural correlates of sound segregation that occur within ~100 ms. 
Dexter, 2015; Bidelman and Howell, 2016; Binder et al., 2004; Du 
et al., 2014; Eisner et al., 2010). 

Conceivably, pitch-based cues and noise could interact during 
the extraction of multiple auditory streams. For instance, tracking 
dynamic F0 cues may help listeners decide which fluctuations 
belong to target speech vs. interfering signals (Qin and Oxenham, 
2005). This could aid the monitoring of auditory sources 
(Assmann, 1996) and improve speech perception in background 
noise (Bidelman and Krishnan, 2010; Macdonald et al., 2010; 
Nabelek et al., 1989). Despite the importance of F0 cues (Alain 
et al., 2007; Assmann and Summerfield, 1990; Chintanpalli et al., 
2014; de Cheveigne et al., 1997b; Meddis and Hewitt, 1992; 
Parsons, 1976) and SNR (Bidelman and Howell, 2016; Billings 
et al., 2013) to successful speech perception, we are unaware of 
any studies examining how composite noise and pitch information 
affect the parsing of simultaneous speech. 

To elucidate the neural mechanisms and time course of con-
current speech segregation, we recorded neuroelectric brain re-
sponses as listeners performed a double-vowel identification task. 
Consistent with previous ERP studies using similar paradigms 
(Alain et al., 2007; Reinke et al., 2003), we hypothesized that F0 
cues would be carried via early auditory cortical activity within the 
first ~250 ms after the initiation of speech. However, we extend 
previous studies on concurrent speech processing by characterizing 
the effects of additive acoustic noise on double-vowel segregation. 
Given the importance of low-frequency, F0-based cues to noise-
degraded speech perception (Bidelman and Krishnan, 2010; 
Macdonald et al., 2010; Nabelek et al., 1989), we hypothesized 
that noise (SNR) and pitch (F0) cues might interact during the 
segregation of speech mixtures, producing a differential effect on 
its neural encoding. To provide a novel, more fine-grained analysis 
of the temporal emergence of speech segregation, we also applied 
multivariate classification techniques to classify neural responses 
and identify the earliest time at which brain activity differentiated 
speech based on intrinsic (F0-cues) and extrinsic (SNR) acoustic 
properties of speech mixtures. 

2. Methods 

2.1. Participants 

Thirteen young adults (mean ± SD age: 26.1 ± 3.8 years; 10 
female, 3 male) participated in the experiment. All had obtained 
a similar level of formal education (19.6 ± 2.8 years), were right 
handed (>43.2 laterality) (Oldfield, 1971), had normal hearing 
thresholds (i.e., 25 dB HL) at octave frequencies between 250 
and 8000 Hz, and were native speakers of American English. 
None reported a history of neuropsychiatric disorders. On 
average, listeners had 5.6 ± 3.6 years of formal musical training. 
However, this is well below the criteria of most music-related 
plasticity studies which generally define “musicians” as in-
dividuals with a decade or more of experience (Bidelman and 
Krishnan, 2010; Bidelman et al., 2014; Parbery-Clark et al., 
2009a; Zendel and Alain, 2012). Each participant gave informed 
written consent in compliance with a protocol approved by the 
University of Memphis Institutional Review Board. 

Generalized speech-in-noise (SIN) recognition skills were 
assessed using the QuickSIN (Killion et al., 2004). We have previ-
ously shown strong correspondence between QuickSIN scores and 
neurophysiological responses (Bidelman and Bhagat, 2015; 
Bidelman and Howell, 2016). Participants heard sentence lists 
embedded in four-talker babble noise. “SNR loss” was computed 
from the number of keywords recalled and represents the SNR 
required to correctly identify 50% of the target items (Killion et al., 
2004). QuickSIN scores were measured for four lists and averaged 
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to obtain a stable estimate of each listener's real-world SIN recog-
nition skills. 
2.2. Electrophysiological procedures 

2.2.1. Double vowel stimuli 
Speech stimuli were modeled after previous studies on con-

current (double-vowel) segregation (Alain et al., 2007; Assmann 
and Summerfield, 1989; Assmann and Summerfield, 1990). Syn-
thetic, steady-state vowel tokens (/a/, /i/, and /u/) were created 
using a Klatt synthesizer (Klatt, 1980) implemented in MATLAB® 

2015b (The MathWorks, Inc., Natick, MA). Each token was 200 ms in 
duration including 10-ms cos2 onset/offset ramping to prevent 
spectral splatter. F0 and formant frequencies were held constant 
over the vowel duration. The F0 was either 100 or 125 Hz. Double-
vowel stimuli were created by combining pairs of single-vowels 
where each pair had either identical (0 semitones; STs) or 
different F0s (4ST). That is, one vowel's F0 was set at 100 Hz while 
the other vowel had an F0 of 100 or 125 Hz. Each vowel was paired 
with every other vowel (except itself), resulting in a total of 6 
unique double-vowel stimuli (i.e., 3 pairs x 2 F0 combinations). 
Double-vowels were presented in both a clean and noise condition 
(separate blocks) in which stimuli were delivered concurrent with a 
backdrop of multi-talker noise babble (þ5 dB SNR) (Bidelman and 
Howell, 2016; Nilsson et al., 1994). This noise level was selected 
based on extensive pilot testing which showed this SNR hindered 
double vowel identification but avoided floor performance. Masker 
level was manipulated rather than the signal to ensure that SNR 
was not positively correlated with overall sound level (Bidelman 
and Howell, 2016; Binder et al., 2004). The babble was presented 
continuously to avoid time-locking with the stimulus presentation. 
We chose babble over other forms of acoustic inference (e.g., white 
noise) because it more closely mimics real-world listening situa-
tions and tends to have a larger effect on the auditory ERPs (Kozou 
et al., 2005). 

Stimulus presentation was controlled by MATLAB routed to a 
TDT RP2 interface (Tucker-Davis Technologies, Alachua, FL). 
Speech stimuli were delivered binaurally at an intensity of 81 dB 
SPL through ER-2 insert earphones (Etymotic Research, Elk 
Grove, IL). During each block of EEG recording, listeners heard 50 
exemplars of each double-vowel combination and were asked to 
identity both vowels as quickly and accurately as possible on the 
keyboard. Feedback was not provided and listeners were told 
ahead of time that every trial would contain two unique vowels. 
The interstimulus interval was jittered randomly between 800 
and 1000 ms (20-ms steps, rectangular distribution) to avoid 
rhythmic entrainment of the EEG (Luck, 2005, p. 168) and lis-
teners anticipating subsequent trials. The next trial commenced 
following the listener's behavioral response. Order of vowel pairs 
was randomized within and across participants and clean and 
noise conditions were run in separate blocks. A total of six blocks 
(3 clean, 3 noise) were completed, yielding 150 trials for each of 
the individual double-vowel conditions. Listeners were given 
2e3 min breaks after each block (10e15 min after 3 blocks) as 
needed to avoid fatigue. The entire experimental protocol 
including behavioral and electrophysiological testing took ~2 h to 
complete. 

Prior to the experiment proper, we required that participants be 
able to identify single vowels in a practice run with >90% accuracy 
(e.g., Alain et al., 2007). This ensured their task performance would 
be mediated by concurrent sound segregation skills rather than 
isolated identification, per se. 
2.2.2. ERP recording and preprocessing 
EEG recording procedures followed well-established protocols 

from our laboratory (Bidelman, 2015; Bidelman and Chung, 2015; 
Bidelman and Howell, 2016). Neuroelectric activity was recorded 
from 64 sintered Ag/AgCl electrodes at standard 10-10 scalp loca-
tions (Oostenveld and Praamstra, 2001). Contact impedances were 
maintained <5 kU. EEGs were digitized using a sampling rate of 
500 Hz (SynAmps RT amplifiers; Compumedics Neuroscan, Char-
lotte, NC). Electrodes placed on the outer canthi of the eyes and the 
superior and inferior orbit were used to monitor ocular activity. 
Saccade and blink artifacts were then corrected in the continuous 
EEG using principal component analysis (PCA) (Wallstrom et al., 
2004). During online acquisition, all electrodes were referenced 
to an additional sensor placed ~1 cm posterior to Cz. Data were re-
referenced off-line to a common average reference (CAR). EEGs 
were then epoched (-200-1000 ms), baseline-corrected to the pre-
stimulus interval, and digitally filtered (1e30 Hz, zero-phase) for 
response visualization and ERP analysis. To obtain an adequate 
number of trials for ERP analysis, we pooled responses to collapse 
across the different vowel pairs. This yielded 450 trials per listener 
for each of the four conditions of interest [i.e., 2 SNRs (clean, noise) 
x 2 F0s (0 ST, 4 ST)]. 
2.2.3. Topographic ANOVA (TANOVA) 
In initial exploratory analysis, we used a topographic ANOVA 

(TANOVA) to identify the spatial and temporal points at which ERPs 
were sensitive to our stimulus manipulations (i.e., SNR and STs) (for 
details, see Koenig and Melie-Garcia, 2010; Murray et al., 2008). 
TANOVAs were implemented in the Curry 7 Neuroimaging Suite 
(Compumedics Neuroscan). The TANOVA used a randomization 
procedure (N ¼ 1000 resamples) that tested the distribution of the 
ERP's topography in the measured data against a surrogate distri-
bution, derived by exchanging all participants and electrodes in the 
data. The percentage of shuffled cases where the effect size ob-
tained after randomization was equal to or larger than the 
measured effect size obtained in the observed data provided an 
estimate of the probability of the null hypothesis. This analysis 
yielded running p-values across the epoch that identified the time 
points at which ERPs were significantly modulated by the main 
(SNR, ST) and interaction effects (SNR x ST) of our stimuli. We used 
the within option in Curry 7 which implements the randomization 
tests within subjects and the comparisons are conducted across 
subjects, akin to a repeated measures ANOVA with paired 
comparisons. 
2.2.4. ERP peak quantification 
For the purpose of data reduction and to minimize potential bias 

in electrode selection, we collapsed a subset of the 64-channel 
sensor data into a single region of interest (ROI) encompassing a 
cluster of six frontocentral electrodes (Fp1, Fpz, Fp2, F1, Fz, F2). This 
ROI was guided by our previous reports on the neural correlates of 
speech perception, which found that speech ERPs were most 
prominent at frontocentral scalp locations, indicative of bilateral 
sources in the Sylvian fissure (Bidelman and Lee, 2015; Bidelman 
and Walker, 2017; Bidelman et al., 2013, 2014). 

Peak amplitudes and latencies were measured for the prom-
inent deflections (N1, P2) within this ROI cluster. Visual inspec-
tion of the responses indicated that P1 was weak and could not 
be reliably measured at the single-subject level. Following con-
ventions in previous studies (Bidelman and Howell, 2016; 
Irimajiri et al., 2005), N1 was taken as the minimum negativity 
between 85 and 150 ms and P2 as maximum positivity between 



 

Fig. 1. Behavioral responses for segregating double-vowel stimuli. (A) Accuracy for 
identifying both tokens of double vowel mixtures. Performance is poorer when con-
current vowels contain the same F0 (0ST) and improves ~30% when they contain 
differing F0s (4ST). (inset) Behavioral F0-benefit, defined as the improvement in 
%-accuracy from 0ST to 4ST, indexes the added benefit of pitch cues to speech segre-
gation. F0-benefit is stronger for clean vs. noisy speech, indicating that listeners are 
less successful at exploiting pitch cues when segregating acoustically-degraded signals. 
(B) Speed (i.e., RTs) of double-vowel identification. Listeners are marginally faster at 
identifying speech in noise. Faster RTs at the expense of poorer accuracy (panel A) 
suggests a time-accuracy tradeoff in double-vowel identification. 
Errorbars ¼ ±1 s.e.m.; yp  0.06, *p < 0.05, **p < 0.01, ***p < 0.0001. 
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150 and 260 ms. In addition, the initial TANOVA and visual in-
spection of grand average traces revealed a late modulation with 
changes in ST that peaked around ~400 ms (see Fig. 5). This late 
wave (LW) was quantified as the peak positivity between the 
350e450 ms. 

2.2.5. Discriminant function analysis: predicting concurrent speech 
segregation via ERP classification 

As a finer grained measure of speech processing, we built 
several neural classifiers to identify the spatiotemporally emergence 
of speech segregation. We have previously used similar machine 
learning and multivariate techniques to “decode” perceptual, 
pathological, and stimulus-related events in the EEG (e.g., Bidelman 
et al., 2017; Lee and Bidelman, in press). For each stimulus contrast 
of interest (i.e., pitch or SNR-based segregation), we built a time-
varying neural classifier based on a sliding window analysis 
(15 ms steps) over the ERP's time course. Within each window, a 
linear discriminant analysis (LDA) function was used to segregate 
each listener's neural responses into mutually exclusive groups 
based on amplitude differences at that sample. For example, the 
SNR classifier attempted to predict a given response (ERPX) as being 
evoked by either a “clean” or “noise” stimulus. Classification ac-
curacy was then assessed by determining the proportion of re-
sponses accurately predicted against the actual eliciting stimulus 
(ground truth). Repeating this procedure across time provided a 
running accuracy of the classifier's performance. This approach was 
repeated for each electrode location and listener to examine the 
spatiotemporal discrimination of speech using solely ERP amplitude 
differences across conditions. 

Three different classifiers were examined corresponding to the 
main stimulus effects (SNR: clean vs. noise classification; ST: 0ST vs. 
4ST classification) as well as all four stimulus conditions (i.e., 
clean_0ST, clean_4ST, noise_0ST, noise_4ST). Chance level for clas-
sifying SNR and ST differences from the ERPs is 50% (i.e., a binary 
guess), whereas chance level for classifying the entire stimulus set 
(four options) is 25%. Since we can expect to obtain these levels of 
performance by chance alone, we used permutation tests to iden-
tify segments along each classifier's time course where perfor-
mance was significantly above chance (one-sample t-test against a 
null of either 50% or 25%; N ¼ 1000 resamples, p < 0.05). 

2.3. Behavioral data analysis 

2.3.1. Identification accuracy and the “F0 benefit” 
Behavioral identification accuracy was computed for each 

listener as the percent of trials they labeled both vowel sounds 
correctly. For statistical analyses, %-correct scores were arcsine 
transformed to improve homogeneity of variance assumptions 
necessary for parametric statistics (Studebaker, 1985). Increasing 
the F0 between two vowels provides a pitch cue which leads to an 
improvement in identification accuracy (Assmann and 
Summerfield, 1990; Meddis and Hewitt, 1992)dthe so-called “F0-
benefit” (Arehart et al., 1997; Chintanpalli and Heinz, 2013). To 
provide a singular measure of double-vowel identification we 
calculated the F0-benefit for each listener, computed as the differ-
ence in performance (%-correct) between the 4ST and 0ST condi-
tions. F0-benefit was computed separately for clean and noise 
stimuli allowing us to compare the magnitude of F0 benefit to
concurrent speech segregation with and without noise 
interference. 

2.3.2. Reaction time (RTs) 
Behavioral speech labeling speeds [i.e., reaction times (RTs)], 

were computed separately for each participant as the median 
response latency across trials for a given double-vowel condition. 
RTs were taken as the time lapse between the onset of the stimulus 
presentation and listeners' identification of both vowel sounds. 
Paralleling our previous studies on the neural correlates of speech 
perception (e.g., Bidelman et al., 2013; Bidelman and Alain, 2015a, 
b; Bidelman and Walker, 2017), RTs shorter than 250 ms or 
exceeding 6000 ms were discarded as implausibly fast responses 
and lapses of attention, respectively. 
2.4. Statistical analysis 

Unless otherwise noted, two-way, mixed-model ANOVAs were 
conducted on all dependent variables (GLIMMIX Procedure, SAS® 

9.4, SAS Institute, Inc.). Stimulus SNR (2 levels; clean, þ5 dB noise) 
and semitones (2 levels; 0ST, 4ST) functioned as fixed effects; 
subjects served as a random factor. Tukey-Kramer multiple com-
parisons controlled Type I error inflation. An a priori significance 
level was set at a ¼ 0.05. 

To examine the degree to which neural responses predicted 
listeners' behavioral speech segregation, we performed weighted 
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least square regression between their ERP amplitudes and 
perceptual identification accuracy and in the double-vowel task. 
Robust fitting was achieved using “fitlm” in MATLAB. To arrive at 
a comparable and single measure to describe how neurophysio-
logical responses distinguished speech using pitch cues, we 
derived a “neural F0 benefit,” computed as the difference be-
tween each listener's 4ST and 0ST responses (i.e., ERP4ST e 

ERP0ST). As in the behavioral F0 benefit, this neural analogue was 
computed separately for the clean and noise conditions. This 
neural measure was then regressed against each listener's 
behavioral F0-benefit (i.e., PC4ST e PC0ST). Paralleling our previous 
work on speech perception (cf. Bidelman, 2017; Bidelman and 
Walker, 2017), we reasoned that larger neural differentiation 
between 0ST and 4ST responses would correspond to larger gains 
in behavioral performance (i.e., larger perceptual F0-benefit). 
Repeating this analysis for each wave of the ERP allowed us to 
evaluate the earliest time at which the magnitude of neural ac-
tivity mapped to behavior. 
3. Results 

3.1. Behavioral data 

Behavioral speech identification accuracy and RTs for double-
vowel segregation are shown in Fig. 1. Listeners obtained near-
ceiling performance (96.9± 1.4%) when identifying single vowels 
in isolation. In contrast, double-vowel identification was consid-
erably more challenging; listeners' accuracy ranged from ~30 to 
70% depending on the presence of noise and pitch cues. An ANOVA 
conducted on behavioral accuracy confirmed a significant SNR  ST 
interaction [F1, 12 ¼ 5.78, p ¼ 0.0332], indicating that successful 
double-vowel identification depended on both the noise level and 
presence of F0 pitch cues. Post hoc contrasts revealed listeners 
showed a similar level of performance with and without noise for 
Fig. 2. Neuroelectric brain responses to concurrent vowel mixtures varying in pitch and 
the mastoids (TP7/8) is consistent with generators in the supratemporal plane (Alain et al., 
clean vs. noise; pitch: 4ST vs. 0 ST). Noise delays the neural encoding of concurrent speech a
separations. Positive voltage is plotted up. 
0 ST vowels, those which did not contain pitch cues. Performance 
increased ~30% across the board with greater F0 separation (i.e., 
4ST > 0ST). F0-benefit was larger for clean relative to þ5 dB SNR 
speech [t 12 ¼ 2.15, p ¼ 0.026 (one-tailed)], suggesting listeners 
made stronger use of pitch cues when segregating clean compared 
to acoustically impoverished speech. 

Analysis of RTs revealed a marginal effect of SNR [F1, 12 ¼ 4.11, 
p ¼ 0.065]; listeners were slower identifying clean compared to 
noisy speech (Fig. 1B). The slowing of RTs coupled with better 
%-identification for clean compared to noise-degraded speech is 
indicative of a time-accuracy tradeoff in concurrent sound segre-
gation. Indeed, RTs and %-correct scores were highly correlated 
[r ¼ 0.46, p ¼ 0.006] such that more accurate identification of both 
vowels corresponded with slower decision times. 
3.2. ERP results 

Grand averaged ERPs and scalp topographies are shown for each 
SNR x ST condition in Fig. 2. Scalp maps confirmed that evoked 
responses to speech mixtures were maximal over frontocentral 
electrodes, consistent with neural generators in the supratemporal 
plane (Alain et al., 2007; Picton et al., 1999). Visual inspection of the 
ERPs indicated that additive noise delayed the neural encoding of 
speech (i.e., latencyclean < latencynoise) with slightly stronger re-
sponses for double-vowels at 0STs compared to those with 4ST F0 
separation. 

TANOVAs (Murray et al., 2008) conducted on the ERP topogra-
phies confirmed significant modulations in evoked activity with 
changes in both the SNR and F0 separation of concurrent speech 
sounds, as well as segments sensitive to both acoustic factors (i.e., 
SNR  ST interaction). SNR modulated activity across nearly the 
entirety of the response time course (Fig. 3B). The main effect of 
pitch by itself was less pervasive, but significant modulations were 
identified in the TANOVA at a latency of ~400 ms (Fig. 3C). The 
SNR cues. (inset) The frontocentral distribution of scalp maps and polarity reversal near 
2007; Picton et al., 1999). Difference maps contrast the main stimulus effects (i.e., SNR: 
nd ERPs are slightly more robust for double-vowels containing 0ST compared to 4ST F0 
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significant SNR  ST interaction was circumscribed to and early 
(~150 ms) and late (~625 ms) time window after stimulus onset 
(Fig. 3D). 

To further quantify these noise- and pitch-related effects, peak 
amplitudes and latencies were extracted for the N1, P2, and LW 
components identified in the initial TANOVA analysis (Fig. 4). 
ANOVAs conducted on N1 [F1,12 ¼ 4.83, p ¼ 0.048] and LW 
[F1,12 ¼ 16.90, p ¼ 0.0014] wave amplitudes showed a main effect of 
SNR with clean speech eliciting more robust responses than noise-
degraded speech (Fig. 4A and E). P2 amplitude showed only a 
marginal main effect of SNR [F1,12 ¼ 4.60, p ¼ 0.053] (Fig. 4C). 

Stronger effects were observed in ERP latency. N1 and LW were 
both earlier for clean relative to noise-degraded speech [N1: 
F1,12 ¼ 37.86, p < 0.001; LW: F1,12 ¼ 7.30, p ¼ 0.0192]. Notably, P2 
latency showed a SNR  ST interaction [F1,12 ¼ 6.57, p ¼ 0.025], 
paralleling the pitch  noise interaction observed behaviorally (see 
Fig. 1A). Post hoc contrasts revealed similar P2 latencies between 
clean and noisy speech in the 0ST condition (i.e., 
latencynoise ¼ latencyclean) that diverged at 4ST (i.e., 
latencynoise > latencyclean). These results suggest that while multi-
ple components of the ERPs are affected by SNR and pitch differ-
ences in concurrent speech mixtures, only P2 latency paralleled the 
SNR  ST interaction pattern observed at the behavioral level. 
Fig. 3. Topographic ANOVA (TANOVA) revealing the time course at which the brain 
distinguishes concurrent speech based on SNR and pitch cues. (A) Mean global field 
power (GFP) (Lehmann and Skrandies, 1980) for each stimulus condition, quantifying 
the overall activation at each time sample from the aggregate multichannel evoked 
response. (B) Time course for the main effect of SNR [i.e., mean(clean0ST, clean4ST) e 
mean(noise0ST, noise4ST)]. The trace represents the running p-value for the effect, 
computed via permutation resampling (N ¼ 1000 shuffles; Murray et al., 2008). Dotted 
lines mark the p ¼ 0.05 significance level (uncorrected); gray shaded areas show non-
significant time segments. Clean speech is highly distinguishable from noise-degraded 
speech across nearly the entire epoch, but first appears in the 50e200 ms time win-
dow. (C) Time course for the main effect of pitch [i.e., mean(4STclean, 4STnoise) e 
mean(0STclean, 0STnoise)]. Significant modulations in the ERPs coding pitch differences 
are observed ~400 ms post stimulus onset. (D) SNR  ST interaction effect. Pitch and 
noise interact during the neural encoding of speech at both early (~150 ms) and late 
(~625 ms) time points. 
3.3. Brain-behavior relationships 

Associations between neural and behavioral F0-benefit are
shown in Fig. 5. Of the various ERP deflections, only changes in P2 
amplitude with F0-cues (4ST-0ST) were correlated with behavioral 
F0-benefit, particularly in noise [r ¼ 0.49, p ¼ 0.043]. That is, larger 
neural F0-benefit (reflected in P2) was associated with more ac-
curate behavior identification performance and success in 
exploiting pitch cues for segregation. No other individual compo-
nent showed a reliable correspondence with behavior (all 
ps > 0.05). While suggestive, some caution is still warranted when 
interpreting the strength of this P2 correlation because it did not 
survive adjustment when we corrected for multiple comparisons 
(i.e., p < 0.17; Holm, 1979). Nevertheless, ERP results indicate that 
pattern of responses observed in perceptual segregation (i.e., 
SNR  ST interaction) and behavioral F0-benefit experienced by 
listeners is best reflected in the latency and amplitude character-
istics of the P2 wave, ~200 ms after the onset of double vowel 
mixtures. 

We found no correlations between listeners' years of musical 
training and their behavioral F0- benefit nor neural F0-benefit (all 
ps > 0.53). However, this might be expected given the relatively 
limited musical experience in our cohort (~5 years) compared to 
other studies on musicianship and speech in noise listening 
(Bidelman and Krishnan, 2010; Parbery-Clark et al., 2009b; Zendel 
and Alain, 2012). 

Listeners' QuickSIN scores were low (0.73 ± 1.3 dB), consistent 
with the average SIN perception abilities of normal hearing lis-
teners (i.e., 0 dB SNR loss). We found that QuickSIN scores were 
negatively correlated with behavioral F0 benefit in noise [r ¼0.57, 
p ¼ 0.046]. That is, larger gains in our double-vowel task with the 
introduction of pitch cues were associated with lower (i.e., better) 
scores on the QuickSIN. This link suggests that listeners who were 
better at exploiting F0-based cues for segregating isolated speech 
mixtures achieved better sentence-level recognition of speech in 
noise. 

3.4. Neural classifier results 

Having established that auditory neural encoding is affected by 
both the noise (SNR) and F0-pitch separation (ST) of concurrent 
vowel sounds, we next aimed to characterize how brain activity 
differentiated speech spatiotemporally. Fig. 6 shows the output of 
the LDA classifier, applied to discriminate the four stimulus con-
ditions (clean/noise @ 0/4ST) at each electrode location on the 
scalp. For an initial analysis examining the spatial topography of the 
neural classier (temporal properties are examined below), we 
extracted the maximum classification accuracy achieved at each 
electrode location over the entire time course of the epoch. Given 
that we can expect to correctly classify responses 25% of the time by 
chance alone (i.e., guess rate for our four stimulus classes), the 
classifier's performance (>30e35%) is considered reliable. More 
importantly, the topographic distribution of the classifier corrob-
orated our TANOVA (Figs. 2e3) and peak analyses (Fig. 4), by 
demonstrating that concurrent speech stimuli were optimally 
distinguished at frontocentral scalp sites. 

To parse the temporal evolution of the brain's differentiation of 
concurrent speech based on different acoustic cues, we examined 
individual time courses of three neural classifiers built to discrim-
inant SNR, ST, and the overall stimulus set (Fig. 7). Time courses 
were extracted in the frontocentral ROI (Fp1, Fpz, Fp2, F1, Fz, F2). 
This cluster was selected to parallel the ERP peak analyses and 
because neural classification was spatially distributed over these 
frontocentral regions of the scalp (i.e., Fig. 6). 

Separate classifiers are shown contrasting speech-ERPs based 



Fig. 4. ERP amplitudes and latencies are modulated by pitch and SNR differences in concurrent speech mixtures. Amplitude and latency data for the N1 (A-B), P2 (C-D), and 
LW (E-F) waves extracted from a ROI cluster of six frontocentral electrodes (Fp1, Fpz, Fp2, F1, Fz, F2) (inset). While most responses were stronger and earlier for clean relative to 
noise-degraded speech, only P2 latency showed a SNR  ST interaction that paralleled the interaction pattern observed behaviorally (cf. Fig. 1A). *p < 0.05, **p < 0.01. 
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on SNR (blue; clean vs. noise), number of STs between vowel F0s 
(red; 0ST vs. 4ST), and all four stimulus conditions (black; clean/ 
noise @ 0/4ST). Chance levels for the binary contrasts of SNR and ST 
are 50%, whereas chance for classifying the entire stimulus set is 
25% (dotted lines). We found that neural responses segregated 
Fig. 5. Brain-behavior relations underlying double-vowel segregation. Individual panel
Larger F0-benefit reflects more successful neural/behavioral speech segregation with the
modulated by SNR and ST individually (see Fig. 4), only changes in P2 amplitude (across sub
associated with more accurate behavioral identification. Bold trace, potential at Cz. Sold lin
clean from noise-degraded speech as early as ~100 and 200 ms, 
aligning with the N1 and P2 waves of the ERP. Classification of 
speech based solely on F0 cues was weaker but occurred briefly at  
~700 ms (see also Fig. 3D). Overall classification performance 
discriminating the four stimulus classes (2 SNR x 2 ST) was also well 
s show correlations between listeners' behavioral (see Fig. 1A) and neural F0-benefit. 
 addition of pitch cues. Although neural encoding of concurrent speech is heavily 
jects) are correlated with behavior. Larger neural differentiation of speech (in noise) is 
es, significant relations; dotted lines, n.s. relations. 



Fig. 6. Grand average topography of neural classification. For each electrode, we 
plot the maximum neural classification accuracy (% correct) across the time course of 
the ERPs. Chance level is 25% for the four option stimulus set (i.e., clean_0ST, clean_4ST, 
noise_0ST, noise_4ST). Cool colors denote scalp locations where evoked activity poorly 
classifies different speech conditions; hot colors, locations showing above chance 
discriminability. Concurrent speech stimuli are optimally distinguished at frontocen-
tral scalp sites. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 7. Time course for distinguishing concurrent speech from neural responses. 
Results reflect physiological speech differentiation at the frontocentral ROI (Fp1, Fpz, 
Fp2, F1, Fz, F2). Separate classifiers are shown contrasting ERPs based on SNR (blue; 
clean vs. noise), number of STs between vowel F0s (red; 0ST vs. 4ST), and all four 
stimulus conditions (black; clean/noise @ 0/4ST). Chance level for the binary contrasts 
of SNR and ST are 50%; chance level for overall classification of the four stimulus 
classes is 25% (dotted lines). Bars (-) below traces show time segments where each 
classifier performs significantly above chance (permutation test; p < 0.05, N ¼ 1000 
resamples). Neural responses segregate clean from noise-degraded speech at ~100 and 
200 ms (i.e., N1 and P2 waves). Classification of speech with and without F0 cues is 
weaker but occurs briefly at ~700 ms (see also Fig. 3D). Overall classification of the 
entire stimulus set (2 SNR x 2 ST) is also well above chance and occurs within 250 ms 
of stimulus onset (i.e., during the N1-P2 complex). Shading ¼ ±1 s.e.m. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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above 25% chance and occurred within 250 ms of stimulus onset, 
during the N1-P2 complex of evoked responses. 

To evaluate the behavioral relevance of our neural classification 
results, we examined correlations between each classifier's per-
formance metrics and listeners' corresponding perceptual segre-
gation. For the SNR and ST time courses (i.e., Fig. 7), we measured 
peak accuracy and latency at which the classifier achieved maximal 
segregation of the stimulus conditions. Search windows for peak 
quantification were guided by the permutation analysis, which 
identified temporal segments that showed reliable (above chance) 
discrimination of speech conditions (i.e., 0e200 ms for the SNR 
classifier; 600e800 ms for the ST classifier; see Fig. 7). We then 
regressed the classifiers' max accuracy and latency against lis-
teners' corresponding change in behavioral accuracy for each of the 
SNR and ST speech contrasts. For instance, for the effect of SNR, we 
ask if the latency/max accuracy of the brain's differentiation of 
clean vs. noise-degraded speech corresponds with a perceptual 
improvement in identifying clean vs. noisy speech. For ST-based 
segregation, we ask if the latency/max accuracy of neural differ-
entiation of 4 ST vs. 0 ST speech corresponds to the perceptual 
improvement in identifying speech mixtures with and without 
pitch cues. 

Correlations between classifier performance and behavior are 
shown in Fig. 8. For the SNR classifier, we found that the latency of 
peak neural segregation of clean vs. noisy speech was negatively 
correlated with behavioral segregation accuracy [r ¼ 0.69, 
p ¼ 0.009]. That is, earlier (more efficient) neural speech differen-
tiation predicted a larger improvement in perceptual identification 
for clean relative to noise-degraded vowels. Similarly, peak neural 
classification accuracy was positively correlated with listeners' 
ability to exploit pitch cues for segregation [r ¼ 0.57, p ¼ 0.044]. 
That is, larger neural differentiation between ST conditions was 
associated with better behavioral speech segregation using pitch 
cues. These results help clarify the behavioral relevance of our 
neural classifier analysis by demonstrating that the perceptual 
segregation of speech mixtures is determined by how accurately 
and how early brain activity distinguishes concurrent speech 
tokens. 
4. Discussion 

In the present study, we examined neuroelectric brain activity as 
listeners rapidly identified double vowel stimuli varying in their 
pitch (F0) and noise level (SNR) to better delineate the time course 
of speech segregation based on intrinsic and extrinsic acoustic 
factors. Consistent with the large body of literature on double 
vowel identification (e.g., Alain et al., 2007, 2017; Assmann and 
Summerfield, 1989; Chintanpalli and Heinz, 2013; Chintanpalli 
et al., 2016), results confirm that listeners can exploit F0 differ-
ences between vowels to segregate speech. We extend these pre-
vious studies but demonstrating that “F0-benefit” (i.e., 
improvement in accuracy with pitch cues) interacts with the de-
gree of noise interference in the acoustic environment. Perceptual 
F0-benefit was larger for clean compared to noise-degraded (þ5 dB  
SNR) speech. These behavioral data were paralleled in several early 
and late modulations in the ERPs which reflected different prop-
erties of parsing concurrent speech mixtures. 

Our electrophysiological data corroborate recent studies on the 
neural correlates of concurrent speech segregation by demon-
strating early modulations in the ERPs within ~250 ms of sound 
onset that carry information on multiple auditory objects (Alain 



Fig. 8. Relations between neural classifier metrics and behavioral speech segre-
gation performance. (A) Latency of peak neural classification (0e200 ms time win-
dow, see blue trace, Fig. 7) in distinguishing clean and noise speech ERPs is negatively 
correlated with behavioral segregation accuracy. More efficient neural differentiation 
of speech is associated with a larger improvement in perceptual identification for clean 
relative to noise-degraded vowel mixtures. (B) Peak neural classification accuracy is 
positively correlated with listeners' ability to exploit pitch cues for segregation. Larger 
neural differentiation of speech between ST conditions is associated with better 
behavioral segregation. *p < 0.05, **p < 0.01. 
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et al., 2007, 2017). We observed rapid transient changes in the N1 
and P2 dependent on the F0 separation of simultaneous vowel 
sounds and the SNR of a concurrent noise masker. Relative to clean 
speech, evoked responses in noise were generally delayed and 
weaker, consistent with noise-related changes observed in the 
encoding of isolated speech sounds (Bidelman and Howell, 2016; 
Billings et al., 2010, 2013). Some studies have suggested that low-
level intensity background noise can actually enhance cortical re-
sponses to auditory stimuli (Alain et al., 2012, 2014, 2009; Bidelman 
and Howell, 2016; Parbery-Clark et al., 2011), a facilitation that may 
reflect engagement of the “antimasking” function of the peripheral 
efferent system (Alain et al., 2009; Bidelman and Bhagat, 2015; 
Winslow and Sachs, 1987). However, the lack of noise-related 
facilitation in the current study compared to others is likely due 
to our weaker noise level and the use of double vowel mixtures 
compared to isolated speech. Noise-related changes in the speech 
ERPs are thought to reflect a reduction in neural synchrony with 
increasing levels of noise (Ponjavic-Conte et al., 2013). This expla-
nation could account for the attenuated responses we find for 
noisier speech mixtures compared to their clean counterparts. 

In contrast to the more pervasive SNR-related ERP modulations 
which lasted over the entirety of the response (e.g., Fig. 3B), F0-
related changes in double-vowel encoding were more muted and 
circumscribed to the ~400 ms time window (e.g., Fig. 3C). This later 
modulation is consistent with previous neuroimaging studies 
which have observed a similar deflection 350e400 ms after sound 
onset that covaries with the F0-difference between vowels (Alain 
et al., 2005a, 2007; Reinke et al., 2003). That this late wave is 
linked to segregation processing is suggested by the fact that more 
successful learners in double-vowel tasks show enhancements in 
later sustained activity 300e400 ms after speech onset (Alain et al., 
2007, 2015). 

Our neural classifier analysis helps elucidate the time course of 
these extrinsic (noise) and intrinsic (pitch) acoustic stressors on 
concurrent speech segregation. We found that brain activity reli-
ably distinguished speech with and without external noise within 
150e250 ms after stimulus onset. In contrast to SNR-based segre-
gation, the neural differentiation of speech mixtures based on pitch 
cues alone took considerably longer (~700 ms) (Fig. 7). Thus, 
corroborating results from both our TANOVA and time-varying 
neural classification analyses imply early and late processes that 
unfold during the parsing of simultaneous speech. Consistent with 
multistage models of concurrent speech segregation (Alain et al., 
2005a), we argue that the early process reflects pre-perceptual, 
sensory-based segregation occurring in our near auditory cortex 
that tags the acoustic clarity of speech (i.e., clean vs. noise) within 
200 ms (Bidelman and Howell, 2016). The frontocentral topography 
of both the raw ERPs as well as neural classifier accuracy (Fig. 7) is  
consistent with neural generators in the supratemporal plane 
(Alain et al., 2007; Picton et al., 1999). In contrast, the later acti-
vation (~400 ms and beyond) could index post-perceptual pro-
cesses, reflecting the match of each vowel constituent to their 
respective memory templates (Alain et al., 2007). Evidence that this 
later component reflects cognitive processing is supported by 
studies showing similar late (~400 ms) activation that occurs only 
during active (but not passive) concurrent sound segregation (Alain 
et al., 2001; Bidelman and Alain, 2015a). Compared to SNR-based 
segregation, F0-based segregation is arguably more difficult and 
cognitively demanding than parsing clean vs. noise-degraded 
speech. Thus, the later time course of the ST compared to SNR ef-
fect in our data (e.g., Figs. 3C and 7) could reflect the higher 
cognitive demand and/or perceptual confusion when segregating 
speech mixtures using pitch cues alone. 

While our neural classifier and TANOVA results suggest that 
neural activity can adequately differentiate speech based on either 
SNR or pitch cues, these analyses do not address the behavioral 
relevance of neural activity to perceptual sound segregation. In this 
regard, brain-behavioral correlations help reveal the earliest time 
at which neural activity maps to behavior. At the behavioral level, 
we found that noise and pitch interacted during listeners' double-
vowel segregation (Fig. 1A). That is, while all participants experi-
enced the classic F0-benefit (i.e., improvement in identification 
accuracy with pitch cues), the advantage was dependent on the 
amount of background noise that overlapped target speech mix-
tures; listeners experienced stronger F0-benefit for clean relative to 
noise-degraded speech. Paralleling the behavioral data, ERPs 
showed significant SNR x F0 modulations within the timeframe of 
the N1-P2 complex (Fig. 3D). However, only the P2 wave showed a 
similar SNR x F0 pattern as behavior (Fig. 4D) and actually corre-
lated with listeners' perception (Fig. 5). Thus, while we observe 
multiple time courses to concurrent speech segregation mecha-
nisms, perceptual success in parsing multiple streams seems driven 
by coding in the timeframe of P2 (150e200 ms). These results are 
consistent with the notion that early components like the N1 reflect 
exogenous properties of the acoustic signal whereas P2 further 
reflects the endogenous properties of the signal's identity and the 
recognition of perceptual objects (e.g., Alain et al., 2007; Bidelman 
and Lee, 2015; Bidelman and Alain, 2015b; Bidelman et al., 2013; 
Wood et al., 1971). 

In sum, we find a dynamic time course for concurrent speech 
sound processing that depends on both extrinsic and intrinsic 
acoustic factors. The earlier timing of neural speech differentiation 
based on noise (SNR) compared to pitch (F0) implies that the 
cortical extraction of speech from extrinsic noise is more efficient 
than distinguishing speech using intrinsic voice pitch cues alone. 
Nevertheless, our findings demonstrate that noise and pitch in-
formation interact relatively early (few hundred milliseconds) in 
the neural hierarchy as cerebral cortex arrives at the identity of 
concurrent speech signals. 
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