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a b s t r a c t  

Parsing simultaneous speech requires listeners use pitch-guided segregation which can be affected by 
the signal-to-noise ratio (SNR) in the auditory scene. The interaction of these two cues may occur at 
multiple levels within the cortex. The aims of the current study were to assess the correspondence 
between oscillatory brain rhythms and determine how listeners exploit pitch and SNR cues to suc-
cessfully segregate concurrent speech. We recorded electrical brain activity while participants heard 
double-vowel stimuli whose fundamental frequencies (F0s) differed by zero or four semitones (STs) 
presented in either clean or noise-degraded (þ5 dB SNR) conditions. We found that behavioral identi-
fication was more accurate for vowel mixtures with larger pitch separations but F0 benefit interacted 
with noise. Time-frequency analysis decomposed the EEG into different spectrotemporal frequency 
bands. Low-frequency (q, b) responses were elevated when speech did not contain pitch cues (0ST > 4ST) 
or was noisy, suggesting a correlate of increased listening effort and/or memory demands. Contrastively, 
g power increments were observed for changes in both pitch (0ST > 4ST) and SNR (clean > noise), 
suggesting high-frequency bands carry information related to acoustic features and the quality of speech 
representations. Brain-behavior associations corroborated these effects; modulations in low-frequency 
rhythms predicted the speed of listeners’ perceptual decisions with higher bands predicting identifica-
tion accuracy. Results are consistent with the notion that neural oscillations reflect both automatic (pre-
perceptual) and controlled (post-perceptual) mechanisms of speech processing that are largely divisible 
into high- and low-frequency bands of human brain rhythms. 

© 2018 Elsevier B.V. All rights reserved. 
1. Introduction 

In normal auditory scenes (e.g., cocktail parties), listeners must 
parse acoustic mixtures to extract the intended message of a target, 
a process known as source segregation. Previous studies have 
suggested that fundamental frequency (F0) (i.e., pitch) differences 
provide a robust cue for identifying the constituents of concurrent 
speech. For instance, using synthetic double-vowel stimuli in a 
concurrent speech identification task, studies have shown that 
accuracy of identifying both vowels improves with increasing pitch 
differences between the vowels for F0 separations from 0 to about 4 
semitones (STs) (Assmann and Summerfield, 1989; Assmann and 
Summerfield, 1990; Assmann and Summerfield, 1994; de 
 Sciences & Disorders, Uni-
, TN 38152, USA. 
idelman). 
Cheveign e et al., 1997). This improvement has been referred to as 
the “F0 benefit” (Arehart et al., 1997; Chintanpalli and Heinz, 2013; 
Chintanpalli et al., 2016). Thus, psychophysical research from the 
past several decades confirms that human listeners exploit F0 
(pitch) differences to segregate concurrent speech. 

Neural responses to concurrent speech and non-speech sounds 
have been measured at various levels of the auditory system 
including single-unit recordings in animals (Palmer, 1990; Portfors 
and Sinex, 2005; Sinex et al., 2003; Snyder and Sinex, 2002) and in 
human, via evoked potentials (Alain et al., 2005; Bidelman, 2017; 
Bidelman and Alain, 2015b; Dyson and Alain, 2004) and fMRI 
(Arnott et al., 2005). The segregation of complex signals is thought 
to involve a multistage hierarchy of processing, whereby initial pre-
attentive processes partition the sound waveform into distinct 
acoustic features (e.g., pitch, harmonicity) which is then acted upon 
by later, post-perceptual Gestalt principles (Koffka, 1935) [e.g., 
grouping by physical similarity, temporal proximity, good conti-
nuity (Bregman, 1990)] and phonetic template matching (Alain 

mailto:g.bidelman@memphis.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heares.2018.01.006&domain=pdf
www.sciencedirect.com/science/journal/03785955
http://www.elsevier.com/locate/heares
https://doi.org/10.1016/j.heares.2018.01.006
https://doi.org/10.1016/j.heares.2018.01.006
https://doi.org/10.1016/j.heares.2018.01.006


A. Yellamsetty, G.M. Bidelman / Hearing Research 361 (2018) 92e102 93 
et al., 2005; Meddis and Hewitt, 1992). 
In humans, the neural correlates of concurrent speech segre-

gation have been most readily studied using event-related brain 
potentials (ERPs). Modulations in ERP amplitude/latency provide 
an index of the timing and level of processing for emergent 
mechanisms of speech segregation. Mapping the time course of 
concurrent speech processing, modulations in neural activity have 
been observed as early as ~150e200 ms, indicative of pre-attentive 
signal detection, with conscious identification of simultaneous 
speech occurring slightly later, ~350e400 ms post-stimulus onset 
(Alain et al., 2007, 2005, 2017; Bidelman and Yellamsetty, 2017; Du 
et al., 2010; Reinke et al., 2003). Further perceptual learning studies 
have shown enhancements in the ERPs with successful learning in 
double vowel tasks in the form of an earlier and larger N1-P2 
complex (enhanced sensory coding < 200 ms) coupled with larger 
slow wave activity (~400 ms), indicative of more effective cognitive 
processing/memory template matching (Alain et al., 2007; Reinke 
et al., 2003). Using brain-imaging methods (PET, fMRI), the spatial 
patterns of neural activation associated with speech processing 
have also been visualized in various regions of the auditory cortex 
(Giraud et al., 2004; Pulvermüller, 1999). For example, fMRI im-
plicates a left thalamocortical network including thalamus, bilat-
eral superior temporal gyrus and left anterior temporal lobe in 
successful double-vowel segregation (Alain et al., 2005). 

One of the main factors affecting the parsing of simultaneous 
speech is signal-to-noise ratio (SNR). In real-world listening envi-
ronments, successful recognition of noise-degraded speech is 
thought to reflect a frontotemporal speech network involving a 
close interplay between primary auditory sensory areas and infe-
rior frontal brain regions (Bidelman and Alain, 2015b; Bidelman 
and Howell, 2016; Binder et al., 2004; Eisner et al., 2010). Conse-
quently, dynamic F0 cues and noise SNR are likely to interact during 
the extraction of multiple auditory streams and occur relatively 
early (within few hundred milliseconds) in the neural hierarchy 
(Bidelman, 2017; Bidelman and Yellamsetty, 2017). 

While prior studies have shed light on cortical activity under-
lying the neural encoding of concurrent speech, they cannot speak 
to how different frequency bands of the EEG (i.e., neural oscilla-
tions) relate to concurrent speech segregation. These frequency-
specific “brain rhythms” become apparent only after averaging 
single-trial epochs in the spectral domain. The resulting neural 
spectrogram can be decomposed into various frequency bands 
which are thought to reflect local (high-frequency) and long-range 
(low -frequency) communication between different neural pop-
ulations. Studies also suggest that various frequency ranges of the 
EEG may reflect different mechanisms of processing, including 
attention (Lakatos et al., 2008), navigation (Buzsaki, 2005), memory 
(Palva et al., 2010; Sauseng et al., 2008), motor planning (Donoghue 
et al., 1998), and speech-language comprehension (Doelling et al., 
2014; Ghitza, 2011, 2013; Ghitza et al., 2013; Haarmann et al., 
2002; Shahin et al., 2009). Although still debated, the general 
consensus is that lower frequency oscillations are associated with 
the perception, cognition, and action, whereas high-frequency 
bands are associated with stimulus transduction, encoding, and 
feature selection (von Stein and Sarnthein, 2000). 

With regard to speech listening, different oscillatory activity 
may contribute to the neural coding of acoustic features in the 
speech signal or different internal cognitive operations related to 
the perceptual segregation process. Speech can be decomposed 
into different bands of time-varying modulations (i.e., slow-varying 
envelope vs. fast-varying fine structure) which are captured in the 
neural phase-locked activity of the scalp EEG (Bidelman, 2016). 
Theoretical accounts of brain organization suggest that different 
time-varying units of the speech signal (e.g., envelope vs. fine 
structure; phoneme vs. sentential segments) might be “tagged” by 
different frequency ranges of neural oscillations that coordinate 
brain activity at multiple spatial and temporal scales across distant 
cortical regions. Of relevance to speech coding, delta band (<3 Hz) 
oscillations have been shown to reflect processing related to 
sequencing syllables and words embedded within phrases (Ghitza, 
2011, 2012). Theta (q: 4e8 Hz) band has been linked with syllable 
coding at the word level (Bastiaansen et al., 2005; Giraud and 
Poeppel, 2012; Goswami, 2011) and attention/arousal (Aftanas 
et al., 2001; Paus et al., 1997). In contrast, beta (b: 15e30 Hz) 
band has been associated with the extraction of global phonetic 
features (Bidelman, 2015a, 2017; Fujioka et al., 2012; Ghitza, 2011), 
template matching (Bidelman, 2015a), lexical semantic memory 
access (Shahin et al., 2009), and perceptual binding in brain net-
works (Aissani et al., 2014; Brovelli et al., 2004; von Stein and 
Sarnthein, 2000). Lastly, gamma (g: > 50 Hz) band has been asso-
ciated with detailed phonetic features (Goswami, 2011), short 
duration cues (Giraud and Poeppel, 2012; Zhou et al., 2016), local 
network synchronization (Giraud and Poeppel, 2012; Haenschel 
et al., 2000), perceptual object construction (Tallon-Baudry and 
Bertrand, 1999), and experience-dependent enhancements in 
speech processing (Bidelman, 2017). Yet, the role of rhythmic 
neural oscillations in concurrent speech perception and how 
various frequency bands of the EEG relate to successful auditory 
scene analysis remains unclear. 

In the present study, we aimed to further elucidate the neural 
mechanisms of concurrent speech segregation from the perspec-
tive of oscillatory brain activity. To this end, we recorded neuro-
electric responses as listeners performed a double-vowel 
identification task during stimulus manipulations designed to 
promote or deny successful segregation (i.e., changes in F0 sepa-
ration of vowels; with/without noise masking). Time-frequency 
analysis of the EEG provided novel insight into the correspondence 
between brain rhythms and speech perception and how listeners 
exploit pitch and SNR cues for successful segregation. Based on 
previous investigations on evoked (ERP) correlates of concurrent 
speech segregation (Alain et al., 2007; Bidelman and Yellamsetty, 
2017; Reinke et al., 2003) we expected early modulations in 
higher frequency bands of the EEG (e.g., g-band) would be sensitive 
to changes in F0-pitch and the SNR of speech. This would be 
consistent with the hypothesis that high frequency oscillations tag 
information related to the acoustic features of stimuli and the 
quality of speech representations. Additionally, we hypothesized 
that lower bands of oscillation (e.g., q-band) would reflect more 
domain general, internal operations related to the perceptual 
segregation process and task demands (e.g., attention, listening 
effort, memory demands). 

2. Methods 

2.1. Subjects 

Thirteen young adults (mean ± SD age: 26.1 ± 3.8 years; 10 fe-
males, 3 males) participated in the experiment. All had obtained a 
similar level of formal education (19.6 ± 2.8 years), were right 
handed (>43.2 laterality) (Oldfield, 1971), had normal hearing 
thresholds (i.e., 25 dB HL) at octave frequencies between 250 and 
8000 Hz, and reported no history of neuropsychiatric disorders. 
Each gave written informed consent in compliance with a protocol 
approved by the University of Memphis Institutional Review Board. 

2.2. General speech-in-noise recognition task 

We measured listeners’ speech-in-noise (SIN) recognition using 
the standardized QuickSIN test (Killion et al., 2004). We have pre-
viously shown a strong correspondence between QuickSIN scores 
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and speech ERPs (Bidelman and Howell, 2016), justifying the in-
clusion of this instrument. Participants heard two lists embedded in 
four-talker babble noise, each containing six sentences with five 
key words. Sentences were presented at 70 dB SPL using pre-
recorded signal-to-noise ratios (SNRs) which decreased in 5 dB 
steps from 25 dB (easy) to 0 dB (difficult). After each presentation, 
participants repeated the sentence and the number of correct key 
words were scored. “SNR loss” (computed in dB) was determined 
by subtracting the total number of correctly recalled words from 
25.5. This metric represents the SNR required to correctly identify 
50% of the key words across the sentences (Killion et al., 2004). SNR 
loss was measured for two lists separately for the left and right ear. 
The four responses were then averaged to obtain a stable SIN 
recognition score for each participant. 

2.3. Electrophysiological procedures 

2.3.1. Double vowel stimuli 
Speech stimuli were modeled after previous studies on con-

current double-vowel segregation (Alain et al., 2007; Assmann and 
Summerfield, 1989; Assmann and Summerfield, 1990; Bidelman 
and Yellamsetty, 2017). Synthetic, steady-state vowel tokens (/a/ 
,/i/, and/u/) were created using a Klatt synthesizer (Klatt, 1980) 
implemented in MATLAB® 2015b (The MathWorks, Inc.). Each to-
ken was 200 ms in duration including 10-ms cos2 onset/offset 
ramping. Vowel F0 and formant frequencies were held constant 
over the duration. F0 was either 100 or 125 Hz. Double-vowel 
stimuli were then created by combining single-vowel pairs. Each 
vowel pair had either identical (0 ST) or different F0s (4ST). That is, 
one vowel's F0 was set at 100 Hz while the other vowel had an F0 of 
100 or 125 Hz so as to produce double-vowels with an F0 separa-
tion of either 0 or 4 semitones (STs). Each vowel was paired with 
every other vowel (except itself), resulting in a total of 6 unique 
double-vowel pairings (3 pairs x 2 F0 combinations). Double-
vowels were presented in a clean and noise condition (separate 
blocks), in which stimuli were delivered concurrently with a 
backdrop of multi-talker noise babble (þ5 dB SNR) (Bidelman and 
Howell, 2016; Nilsson et al., 1994). SNR was manipulated by 
changing the level of the masker rather than the signal to ensure 
that SNR was not positively correlated with overall sound level 
(Bidelman and Howell, 2016; Binder et al., 2004). Babble was pre-
sented continuously to avoid time-locking it with the stimulus 
presentation. We chose continuous babble over other forms of 
acoustic interference (e.g., white noise) because it more closely 
mimics real-world listening situations and tends to have a larger 
effect on the auditory ERPs (Kozou et al., 2005). 

Stimulus presentation was controlled by MATLAB routed to a 
TDT RP2 interface (Tucker-Davis Technologies). Speech stimuli 
were delivered binaurally at a level of 81 dB SPL through ER-2 insert 
earphones (Etymotic Research). During EEG recording, listeners 
heard 50 exemplars of each double-vowel combination and were 
asked to identity both vowels as quickly and accurately as possible 
on the keyboard. Feedback was not provided. The inter-stimulus 
interval was jittered randomly between 800 and 1000 ms (20-ms 
steps, rectangular distribution) to avoid rhythmic entrainment of 
the EEG (Luck, 2005, p. 168) and listeners anticipating subsequent 
trials. The next trial commenced following the listener's behavioral 
response. The order of vowel pairs was randomized within and 
across participants; clean and noise conditions were run in separate 
blocks. A total of six blocks (3 clean, 3 noise) were completed, 
yielding 150 trials for each of the individual double-vowel condi-
tions. Listeners were given 2e3 min breaks after each block 
(10e15 min after 3 blocks) as needed to avoid fatigue. 

Prior to the experiment proper, we required that participants be 
able to identify single vowels in a practice run with >90% accuracy 
(e.g., Alain et al., 2007). This ensured their task performance would 
be mediated by concurrent sound segregation skills rather than 
isolated identification, per se. 

2.3.2. EEG data recording and preprocessing 
EEG recording procedures followed well-established protocols 

in our laboratory (Bidelman, 2015b; Bidelman and Howell, 2016; 
Bidelman and Yellamsetty, 2017). Neuroelectric activity was 
recorded from 64 sintered Ag/AgCl electrodes at standard 10-10 
locations around the scalp (Oostenveld and Praamstra, 2001). 
Contact impedances were maintained <5 kU throughout the 
duration of the experiment. EEGs were digitized using a sampling 
rate of 500 Hz (SynAmps RT amplifiers; Compumedics Neuroscan). 
Electrodes placed on the outer canthi of the eyes and the superior 
and inferior orbit were used to monitor ocular activity. The data 
were pre-processed by thresholding EEG amplitudes at ±100 mV. 
Ocular artifacts (saccades and blink artifacts) were then corrected 
in the continuous EEG using a principal component analysis (PCA) 
(Wallstrom et al., 2004). Data were visually inspected for bad 
channels and paroxysmal electrodes were interpolated from the 
adjacent four nearest neighbor channels (distance weighted). These 
procedures helped remove myogenic and other artifacts prior to 
time-frequency analysis that can affect the interpretation of oscil-
latory responses (Pope et al., 2009). During online acquisition, all 
electrodes were referenced to an additional sensor placed ~1 cm 
posterior to Cz. Data were re-referenced off-line to a common 
average reference. EEGs were then epoched (-200-1000 ms), 
baseline-corrected to the pre-stimulus interval, and digitally 
filtered (1e100 Hz, zero-phase) for response visualization and 
time-frequency analysis. To obtain an adequate number of trials for 
analysis, we pooled responses to collapse across different vowel 
pairs. This yielded 450 trials per listener for the four conditions of 
interest [i.e., 2 SNRs (clean, noise) x 2 F0s (0 ST, 4 ST)]. The entire 
experimental protocol including behavioral and electrophysiolog-
ical testing took ~2 h to complete. 

2.4. EEG time-frequency analysis 

Evoked potential (ERP) results related to this dataset are re-
ported in our companion paper (Bidelman and Yellamsetty, 2017). 
New time-frequency analyses (applied here) were used to evaluate 
the correspondence between rhythmic brain oscillations and 
speech perception and how listeners exploit pitch and SNR cues for 
successful segregation. 

From epoched EEGs, we computed time-frequency de-
compositions of single-trial data to assess frequency-specific 
changes in oscillatory neural power (Bidelman, 2015a, 2017). For 
each trial epoch, the time-frequency map (i.e., spectrogram) was 
extracted using Mortlet wavelets as implemented in the MATLAB 
package Brainstorm (Tadel et al., 2011). This resulted in an estimate 
of the power for each time-frequency point over the bandwidth 
(1e100 Hz; 1 Hz steps) and time course (-200e1000 ms) of each 
epoch window. Using the Mortlet basis function, spectral resolution 
decreased linearly with increasing frequency; the full width half 
maximum (FWHM) was ~1 Hz near DC and approached ~20 Hz at 
60 Hz. Temporal resolution improved exponentially with increasing 
frequency; FWHM was ~3 s near DC and ~50 ms at 60 Hz. Single-
trial spectrograms were then averaged across trials to obtain 
time-frequency maps for each subject and stimulus condition (see 
Fig. 2). When power is expressed relative to the baseline pre-
stimulus interval (-200e0 ms), these spectrographic maps are 
known as event-related spectral perturbations (ERSPs) (Delorme 
and Makeig, 2004). ERSPs represent the increase/decrease in EEG 
spectral power relative to the baseline pre-stimulus period (in dB). 
They contain neural activity that is both time- and phase-locked to 
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the eliciting stimulus (i.e., evoked activity) as well as non-phase-
locked responses (i.e., induced oscillatory activity) generated by 
the ongoing stimulus presentation (Bidelman, 2015a, 2017; Shahin 
et al., 2009; Trainor et al., 2009). To reduce the dimensionality of 
the data, we restricted our analysis to the Fz electrode. This channel 
is ideal for measuring auditory evoked responses (Picton et al., 
1999b) and time-frequency oscillations (Bidelman, 2015a, 2017) 
to speech which are both maximal over frontocentral scalp loca-
tions. Moreover, scalp topographies of our data (pooled across 
subjects and conditions) confirmed that most band responses were 
strongest near frontocentral regions of the scalp (see Fig. 3). While 
we restrict subsequent analyses to Fz, it should be noted that in 
pilot testing, we also analyzed responses at different electrode 
clusters. However, results were qualitatively similar to those re-
ported herein (data not shown). 

To quantify frequency-specific changes in oscillatory power to 
concurrent speech, we extracted time courses from ERSP maps in 
five different bands. Band-specific waveforms were extracted by 
taking “slices” of the ERSP maps averaged across different frequency 
ranges: 5e7Hz  (q), 8e12 Hz (ɑ), 15e29 Hz (b), 30e59 Hz (glow), and 
60e90 Hz (ghigh). This resulted in a running time waveform within 
each prominent frequency band of the EEG, similar to an ERP. We 
then contrasted band-specific waveforms (i.e., clean vs. noise; 0 ST 
vs. 4 ST) to compare the neural encoding of double-vowel stimuli 
across the main factors of interest (i.e., SNR and pitch). We used a 
running permutation test (EEGLAB's statcond function; Delorme 
and Makeig, 2004) to determine the time points over which band 
activity differed between stimulus conditions (p < 0.05, N ¼ 1000 
resamples). We required that segments persisted contiguously for 
25 ms to be considered reliable and help control false positives 
(Chung and Bidelman, 2016; Guthrie and Buchwald, 1991). 

This initial analysis revealed time segments where band-specific 
oscillations were modulated by our stimulus manipulations (i.e., 
SNR and pitch). To better quantify stimulus-related changes, we 
extracted peak power from the mid-point of the time segments 
showing significant differences in band activity: q: 450 ms; b: 
350 ms; glow/high: average of peak power at 25 and 175 ms (see 
Fig. 3). Grand average ERSP scalp topographies (pooled across 
stimulus conditions) are shown for each band in Fig. 3. Scalp maps 
confirmed that synchronized responses to speech mixtures were 
maximal over the frontocentral plane (Alain et al., 2006; Picton 
et al., 1999a). 

2.5. Behavioral data analysis 

2.5.1. Identification accuracy and the “F0 benefit” 
Behavioral identification was analyzed as the percent of trials 

where both vowel sounds were identified correctly. For statistical 
analyses, %-correct scores were arcsine transformed to improve 
homogeneity of variance assumptions necessary for parametric 
statistics (Studebaker, 1985). Increasing the F0 between two vowels 
provides a pitch cue which leads to an improvement in accuracy 
identifying concurrent vowels (Assmann and Summerfield, 1990; 
Meddis and Hewitt, 1992)dan effect referred to as the “F0-
benefit” (Arehart et al., 1997; Bidelman and Yellamsetty, 2017; 
Chintanpalli and Heinz, 2013). To provide a singular measure of 
double-vowel identification we calculated the F0-benefit for each 
listener, computed as the difference in performance (%-correct) 
between the 4ST and 0ST conditions. F0-benefit was computed 
separately for clean and noise stimuli allowing us to compare the 
magnitude of F0 benefit in concurrent speech segregation with and 
without noise interference. 

2.5.2. Reaction time (RTs) 
Behavioral speech labeling speeds [i.e., reaction times (RTs)], 
were computed separately for each participant as the median 
response latency across trials for a given double-vowel condition. 
RTs were taken as the time lapse between the onset of the stimulus 
presentation and listeners’ identification of both vowel sounds. 
Following our previous studies on the neural correlates of speech 
perception (e.g., Bidelman and Walker, 2017; Bidelman et al., 2013), 
RTs shorter than 250 ms or exceeding 6000 ms were discarded as 
implausibly fast responses and lapses of attention, respectively. 

2.6. Statistical analysis 

Unless otherwise noted, two-way, mixed-model ANOVAs were 
conducted on all dependent variables (GLIMMIX Procedure, SAS® 

9.4, SAS Institute, Inc.). Stimulus SNR (2 levels; clean, þ5 dB noise) 
and semitones (2 levels; 0ST, 4ST) functioned as fixed effects; 
subjects served as a random factor. Tukey-Kramer multiple com-
parisons controlled Type I error inflation. An a priori significance 
level was set at a ¼ 0.05. 

To examine the degree to which neural responses predicted 
behavioral speech segregation, we performed weighted least 
square regression between listeners' band-specific amplitudes and 
(i) their accuracy, and RTs in the double-vowel task and (ii) 
QuickSIN scores. Robust bisquare fitting was achieved using “fitlm” 
in MATLAB. To arrive at a comparable and single measure to 
describe how neurophysiological responses distinguished speech 
using pitch cues, we derived a “neural F0 benefit,” computed as the 
difference between each listener's 4ST and 0ST responses. As in 
behavioral F0 benefit, this neural analogue was computed sepa-
rately for the clean and noise conditions. We then regressed 
behavioral and neural F0 benefits to assess brain-behavior corre-
spondences. We reasoned that listeners who experience larger 
changes in their neural encoding of speech with added pitch cues 
(i.e., stronger neural F0 benefit) would have larger behavioral gains 
in the double-vowel segregation from 0 to 4 ST (i.e., experience 
bigger perceptual F0 benefit). 

3. Results 

3.1. Behavioral data 

Behavioral speech identification accuracy and RTs for double-
vowel segregation are shown in Fig. 1 A. Listeners obtained near-
ceiling performance (96.9 ± 1.4%) when identifying single vowels. 
In contrast, double-vowel identification was considerably more 
challenging; listeners’ accuracy ranged from ~30 to 70% depending 
on the presence of noise and pitch cues. An ANOVA conducted on 
behavioral accuracy confirmed a significant SNR x F0 interaction [F1, 
12 ¼ 5.78, p ¼ 0.0332], indicating that successful double-vowel 
identification depended on both the noise level and presence of 
F0 pitch cues. Post hoc contrasts revealed listeners showed a similar 
level of performance with and without noise for 0 ST vowels, those 
which did not contain pitch cues. Performance increased ~30% 
across the board with greater F0 separations (i.e., 4ST > 0ST). F0-
benefit was larger for clean relative to þ5 dB SNR speech [t 
12 ¼ 2.15, p ¼ 0.026 (one-tailed)], suggesting listeners made stron-
ger use of pitch cues when segregating clean compared to acous-
tically impoverished speech. 

Analysis of RTs revealed a marginal effect of SNR [F1, 12 ¼ 4.11, 
p ¼ 0.065]; listeners tended to be slower identifying clean 
compared to noisy speech (Fig.1B). The slowing of RTs coupled with 
better %-identification for clean compared to noise-degraded 
speech is indicative of a time-accuracy tradeoff in concurrent 
sound segregation. Indeed, RTs and %-correct scores were highly 
correlated [r ¼ 0.46, p ¼ 0.006] such that more accurate identifica-
tion corresponded with slower decisions. 



Fig. 1. Behavioral responses for segregating double-vowel stimuli. (A) Accuracy for 
identifying both tokens of a two-vowel mixture. Performance is poorer when con-
current speech sounds contain the same F0 (0ST) and improve ~30% when vowels 
contain differing F0s (4ST). (Insert) Behavioral F0-benefit, defined as the improvement 
in %-accuracy from 0ST to 4ST, indexes the added benefit of pitch cues to speech 
segregation. F0-benefit is stronger for clean vs. noisy (þ5 dB SNR) speech indicating 
that listeners are poorer at exploiting pitch cues when segregating acoustically-
degraded signals. (B) Speed (i.e., RTs) for double-vowel segregation. Listeners are 
marginally faster at identifying speech in noise. However, faster RTs at the expense of 
poorer accuracy (panel A) suggests a time-accuracy tradeoff in double-vowel identi-
fication. Data reproduced from Bidelman and Yellamsetty (2017). error bars ¼ ±1 s. e.m. 
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3.2. Neural oscillatory responses during double-vowel coding 

Grand average ERSP time-frequency maps are shown for each of 
the noise and STconditions in Fig. 2. Fig. 3 shows time waveforms for 
the 5e7Hz  (q), 8e12 Hz (ɑ), 15e29 Hz (b), 30e59 Hz (glow), and 
60e90 Hz (ghigh) bands extracted from the spectrographic maps of 
Fig. 2. Each  reflects how different frequency oscillations in the EEG 
code double-vowel mixtures. Generally speaking, lower frequency 
bands including q- and ɑ-band showed sustained activity over the 
duration of the trial which appeared stronger for more difficult 
stimulusconditions (i.e., noisyspeechand0STconditions). Compared 
to clean speech, b-band activity also appeared larger (more positive) 
~400e500 ms after speech onset. Lastly, higher g-band showed 
broadband transient activations that seem to tag the onset (see 
25 ms) and offset (see 200 ms) of the evoking speech stimulus (cf. 
Ross et al., 2010). These high g-band events also appeared stronger 
for clean relative to noise-degraded speech and for 0ST vs. 4ST vowel 
mixtures. In terms of the overall time course of spectral responses, 
the strong modulations of high g-band in clean and at 0ST were 
followed by negative modulation of b-band and sustained positive 
modulation of the q-band. The directions of these band amplitude 
effects were reversed in the noise and 4 ST conditions. 

Fig. 3C shows the SNR  ST interaction waveforms. Interactions 
were confined to a- and b-bands, at early (~150e200 ms) time 
windows after stimulus onset. These early interactions replicate 
(are consistent with) the noise  pitch interactions observed in the 
N1-P2 time window of our previous ERP study on double-vowel 
coding (Bidelman and Yellamsetty, 2017) and thus, were not 
explored further. 

Next, we aimed to quantify changes in spectral band power due 
to each acoustic factor (SNR, STs). For each band time course for the 
two main effects (i.e., Fig. 3 and B), peak amplitudes were extracted 
from the temporal center of segments showing significant 
stimulus-related modulations based on initial permutation tests 
(see -, Fig. 3AeB). For q-band (Fig. 4A), we found elevated spectral 
responses when speech did not contain pitch cues (i.e., 0ST > 4ST) 
[F1, 36 ¼ 0.413, p ¼ 0.0495], whereas the b-band and glow -band 
(Fig. 4B and C), showed stronger oscillatory activity for clean speech 
(i.e., clean > noise) [b band: F1, 36 ¼ 9.73, p ¼ 0.0036; glow band: F1, 
36 ¼ 5.15, p ¼ 0.0294]. Modulations in ghigh power oscillations 
(Fig. 4D) were observed for changes in both pitch (0ST > 4ST) [F1, 
36 ¼ 5.65, p ¼ 0.0229] and SNR (clean > noise) [F1, 36 ¼ 16.87; 
p ¼ 0.0002]. Together, these findings demonstrate that difference in 
neural activity to speech between conditions is derived by acoustic 
features, signal quality, and the cognitive effort which causes 
changes in underlying low vs. high bands of oscillatory activity. 

3.3. Brain-behavior relationships 

Bivariate regressions between band-specific EEG amplitudes and 
behavioral accuracy and RTs are shown in Fig. 5A and B, respectively. 
Foreach frequencyband, wederived a singularmeasureof neural F0-
benefit, computed as the change in response with and without pitch 
cues (e.g., D b4ST e b0ST). This neural measure was then regressed 
against each listener's behavioral F0-benefit for the accuracy and RT 
measures (i.e., D PC4ST e PC0ST for accuracy scores; D RT4ST e RT0ST for 
reaction times). Paralleling our previous work on speech processing 
(cf. Bidelman, 2017; Bidelman and Walker, 2017), we reasoned that 
larger neural differentiation between the 0ST and 4ST would 
correspond to larger gains in behavioral performance (i.e., larger 
perceptual F0-benefit). Repeating this analysis for each band 
allowed us to evaluate potential mechanistic differences in how 
different neural rhythms map to behavior. Each matrix cell shows 
the regression's t-statistic which indicates both the magnitude and 
sign (i.e., negative vs. positive) of the association between variables. 

These analyses revealed that glow was associated (R2 ¼ 0.17) 
with %-accuracy in the double vowel task when pooling clean and 
noise conditions. Analysis by SNR indicated that this correspon-
dence was driven by how glow differentiated clean speech 
(R2 ¼ 0.42). Additional links were found between behavioral RT 



Fig. 2. Neural oscillatory responses to concurrent speech sounds are modulated by SNR and the presence/absence of pitch cues. ERSP time-frequency maps (Fz channel) 
quantify both “evoked” and “rhythmic” changes in EEG power relative to the baseline period. Each panel represents the response to double-vowel stimuli with (4ST) or without 
(0ST) a difference in voice fundamental frequency for stimuli presented either in clean or þ5 dB SNR of noise. Light gray regions above the spectrograms show the schematized 
stimulus. Dotted lines, stimulus onset (t ¼ 0). 

Fig. 3. Band-specific time courses during double-vowel segregation. Shown here are response time courses for each frequency band of the EEG extracted from ERSP spec-
trograms and their interaction. Band waveforms contrast how noise SNR (A), F0 pitch (B), and their interaction (C; SNR x pitch) affect the neural encoding of double-vowel mixtures. 
A permutation test shows contiguous segments (25 ms duration) where spectral power differs between stimulus conditions (- segments; p < 0.05, N ¼ 1000 resamples). 
Modulations in b- and high g-band distinguish clean from noise-degraded speech (b: clean < noise; ghigh ¼ clean > noise). Contrastively, pitch cues are distinguished by modulations 
in the q band (0ST > 4ST) and ghigh band (0ST > 4ST). Head maps (pooled across stimulus conditions and subjects) show the topographic distribution of each band across the scalp at 
time points where the band-specific effects are largest. * Fz electrode for subsequent analysis. Gray regions, schematized stimulus. Shading ¼ ±1 s. e.m. 
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speeds and neural F0-benefit, particularly for low-frequency bands 
of the EEG. Notably, changes in q- (R2 ¼ 0.71) and b- (R2 ¼ 0.19) 
oscillations predicted listeners' RTs, particularly for noise-degraded 
speech.1 Collectively, these findings imply that higher frequency 
1 We carried out the same correlations using average amplitude across the en-
tirety of significant band segments (see -, Fig. 3). These brain-behavior correla-
tions were qualitatively similar to the peak analysis results shown in Fig. 5. 
oscillatory rhythms (g-band) might reflect the quality of stimulus 
representation and thus accuracy in identifying double-vowel 
mixtures. In contrast, low-frequency oscillations are associated 
with the speed of individuals’ decisions and thus the listening effort 
associated with concurrent sound processing. 

Listeners QuickSIN scores were low (0.73 ± 1.3 dB SNR loss), 
consistent with the average speech-in-noise perception abilities for 
normal-hearing listeners (i.e., 0 dB). QuickSIN scores were not 



Fig. 4. Band-specific mean spectral peak amplitudes across conditions. Shown here are mean amplitudes for each frequency band extracted from the temporal center of 
segments showing significant stimulus-related modulations (see Fig. 3). (A) q-band spectral responses were elevated when speech did not contain pitch cues (i.e., 0ST > 4ST). (B) b-
band and (C) glow -band showed stronger desynchronization for clean compared to noise-degraded speech (i.e., clean > noise). Note that negative is plotted up for this band. (D) 
ghigh power modulations were observed for changes in both pitch (0ST > 4ST) and SNR (clean > noise). error bars ¼ ±1 s. e.m. 

Fig. 5. Brain-behavior correlations underlying double-vowel segregation. Individ-
ual cells of each matrix show the t-statistic for the regression indicating both the 
magnitude and sign of association between neural F0-benefit and listeners' corre-
sponding behavioral F0-benefit. In both cases, larger F0-benefit reflects more successful 
neural/behavioral speech segregation with the addition of pitch cues (i.e., 4ST > 0ST). 
(A) Correspondences between neural responses and identification accuracy (%); (B) 
correspondence with RTs. Changes in glow activity predict improved behavioral accu-
racy in double-vowel identification whereas the speed of listeners' decision are pre-
dicted by changes in lower oscillations (q and b band). PC ¼ percent correct, 
RT ¼ reaction times. *p < 0.05, **p  0.01, ***p  0.001. 
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correlated with any band-specific oscillations across SNR or pitch 
conditions. 
4. Discussion 

The present study measured rhythmic neuroelectric brain ac-
tivity as listeners rapidly identified double-vowel stimuli varying in 
their voice pitch (F0) and noise level (SNR). Results showed three 
primary findings: (i) behaviorally, listeners exploit F0 differences 
between vowels to segregate speech and this perceptual F0 benefit 
is larger for clean compared to noise degraded (þ5 dB SNR) stimuli; 
(ii) oscillatory power of lower q and b frequency bands of the EEG 
reflects cognitive processing modulated by task demands (e.g., 
listening effort, memory), whereas high glow and ghigh -band power 
tracks acoustic features (e.g., envelope) and quality (i.e., noisiness) 
of the speech signal that reflect stimulus encoding; (iii) perceptual 
performance in segregating speech sounds is predicted by modu-
latory effects in different bands: low-frequency oscillations corre-
late with behavioral reaction times in double vowel identification 
whereas high-frequency oscillations are linked to accuracy. The 
differential changes in power across frequency bands of the EEG 
suggest the engagement of different brain mechanisms supporting 
speech segregation that vary with pitch and noise cues in auditory 
mixtures. 
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4.1. Effects of SNR and F0 cues on behavioral concurrent vowel 
segregation 

Consistent with previous behavioral data (Arehart et al., 1997; 
Chintanpalli and Heinz, 2013; Chintanpalli et al., 2016; Reinke 
et al., 2003), we found that listeners were better at perceptually 
identifying speech mixtures when vowels contained different F0s 
(4ST) compared to identical (0ST) F0s in both clean and noise 
conditions (clean > noise). This perceptual F0 benefit was larger for 
clean compared to noise degraded (þ5 dB SNR) stimuli. However, 
we extend prior studies by demonstrating that the acoustic stressor 
of noise limits the effectiveness of these pitch cues for segregation. 
Indeed, F0-benefit was weaker for double-vowel identification 
amidst noise compared to clean listening conditions. Similarly, 
smaller DRTs (accompanied by lower accuracy) for segregating in 
noise suggests that listeners experienced a time-accuracy tradeoff 
such that they achieved more accurate identification of speech at 
the expense of slower decision times (Fig. 1). 

Computationally, the identification of concurrent vowels is 
thought to involve a two-stage process in which the auditory sys-
tem first determines the number of elements present in a mixture 
(i.e., “1” vs. “2” sounds) and then seeks their identities (~150e200 
ms). The former process (segregation) is thought to involve a 
comparison of the incoming periodicities of double-vowel F0s, 
which could be realized via autocorrelation-like mechanisms in 
peripheral (Bidelman and Alain, 2015a; Chintanpalli et al., 2014; Du 
et al., 2010; Meddis and Hewitt, 1992) and/or auditory cortical 
neurons (Alain et al., 2005; Bidelman and Alain, 2015a; Du et al., 
2010). 

Indeed, neurons in primary and surrounding belt areas of 
auditory cortex are both sensitive to pitch and even display multi-
peaked tuning with peaks occurring at harmonically-related fre-
quencies (Bendor et al., 2012; Kikuchi et al., 2014). Following F0-
based segregation, the process of determining vowel identity 
could be realized via template matching mechanisms (~300e400 
ms) in which each representation is matched against internalized 
memory profiles for both vowel constituents. Using a computa-
tional model of this two-stage model (i.e., autocorrelation-based 
segregation followed by template matching), Meddis and col-
leagues (Meddis and Hewitt, 1992) have shown that identification 
of two vowels improves from ~40% to 70% when they differ in F0 
from 0 to 4 STdconsistent with the F0-benefit in this study. While 
F0 cues are likely the primary cue for segregation in our double 
vowel task, conceivably, listeners might also use additional acoustic 
cues to parse speech such as spectral differences associated with 
formants (Chintanpalli and Heinz, 2013), temporal envelope cues 
produced by harmonic interactions (Culling and Darwin, 1993), and 
spectral edges. 

4.2. Cortical oscillations reveal mechanistic differences in 
concurrent speech segregation divisible by frequency band 

It is useful to cast our behavioral data in the context of this 
computational framework. We found that listeners showed weaker 
F0-benefit when speech was presented in noise. Poor performance 
in the noise conditions could result either from poorer segregation 
at the initial front end (prior to classification) or weaker matching 
between the noisy vowel representations and their speech tem-
plates. Our behavioral data do not allow us to unambiguously 
adjudicate these two explanations. In this regard, EEG time-
frequency results help isolate different mechanistic accounts. In 
response to a stimulus, synchronous temporal activity is repre-
sented as multiple time courses in brain networks via EEG oscil-
lations whose amplitude depends on the degree of neural 
synchrony. Different frequencies respond differently to sensory 
stimuli and task demands (Hanslmayr et al., 2011). Stimulus 
rhythmic event-related activity can either increase (synchroniza-
tion) or decrease (de-synchronization) as networks are either 
engaged or disengaged, respectively (Destexhe et al., 2007). 

Presumably, the acoustic features contributing to the segrega-
tion of the speech depend on the availability of those cues to the 
auditory system. That is, the encoding and weighting of acoustic 
cues along the auditory pathway may change depending on the 
quality of the incoming signal. Electrophysiologically, we observed 
multiple, frequency-specific time courses to concurrent speech 
segregation with activity unfolding within different spectral 
channels of the EEG dependent on both the pitch and SNR of 
speech. Previous M/EEG work has shown similar sequences of 
events in the early object negativity response (~150 ms) (Alain 
et al., 2005; Du et al., 2010) and early interactions of pitch and 
noise cues (~200 ms) (Bidelman and Yellamsetty, 2017) followed by 
automatic registration of F0 differences at ~250 ms (Alain et al., 
2005; Du et al., 2010). 

In cases where vowel mixtures were further distorted by noise, 
ghigh power showed reduced tracking of stimulus onset/offset (cf. 
Ross et al., 2010). ghigh power was also stronger for 0STcompared to 
4ST speech (i.e., mixtures which did not contain pitch cues). Higher 
g activity for both clean and 0ST conditions may be due to the fact 
that these stimuli offer a more veridical and robust representation 
of the speech signal envelope; clean speech being unconcluded and 
0ST vowels offering a singular harmonic structure (common F0). 
Under this interpretation, modulations in g activity in our double 
vowel task are arguably ambiguous as they signal both cleaner 
signals (clean > noise) simultaneously with representations that 
cannot be cleanly segregated (0ST > 4ST) (cf. Fig. 3A and B). Relat-
edly, brain-behavior correlations showed that larger changes in g 
activity with the addition of pitch cues were associated with poorer 
behavioral F0-benefit (Fig. 5A). Given that higher bands of oscilla-
tions are thought to reflect signal identity and the construction of 
perceptual objects (Bidelman, 2015a, 2017; Tallon-Baudry and 
Bertrand, 1999), our data suggest that the auditory brain must rely 
on more than object-based information for successful segregation. 

In contrast to the higher g-band modulations, we also observed 
distinct modulation in lower bands of the EEG that covaried with 
successful speech segregation. Interestingly, b band amplitudes 
were suppressed for easier stimulus conditions (e.g., clean 4ST; 
Fig. 4B), suggesting a desynchronization in this frequency range. 
Similarly, q-band activity showed prominent increases (synchro-
nization) for difficult 0ST and noise-degraded speech. b band 
(15e30 Hz) has been linked with the extraction of global phonetic 
features (Bidelman, 2015a, 2017; Fujioka et al., 2012; Ghitza, 2011), 
template matching (Bidelman, 2015a), lexical semantic memory 
access (Shahin et al., 2009), and perceptual binding (Aissani et al., 
2014; Brovelli et al., 2004; von Stein and Sarnthein, 2000). In 
contrast, q-band may reflect and attention/arousal (Aftanas et al., 
2001; Paus et al., 1997). Enhancements in q-activity and suppres-
sion in b-modulations are known to correlate with the level of 
attention and memory load in a wide variety of tasks (Bashivan 
et al., 2014; Bastiaansen et al., 2005; Fries et al., 2001). Modula-
tions of M/EEG amplitudes during the conscious identification of 
simultaneous speech occurs around ~350e400 ms post stimulus 
onset (Alain, 2007; Alain et al., 2005, 2017; Bidelman and 
Yellamsetty, 2017; Du et al., 2010; Reinke et al., 2003) relating to 
the time course of b- and q-band oscillatory activity observed in this 
study. 

Thus, we suggest perceptual success in parsing multiple speech 
streams is driven by the degree of cognitive processing (e.g., 
attentional deployment, listening effort) that is determined by the 
availability of acoustic features and signal quality. Cleaner, less 
distorted speech presumably allows more successful matches 
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between speech acoustics and internalized speech templates which 
would aid identification. This notion is supported by the fact that 
larger changes in q responses were associated with smaller DRTs 
whereas larger changes in b responses were associated with larger 
DRTs (Fig. 5B). Given that listeners required a longer time to 
accurately judge double-vowels (i.e., DRTclean>DRTnoise time-
accuracy tradeoff; Fig. 1B), the most parsimonious interpretation 
of our neural results are that q-band elevates due to increased 
listening effort or cognitive demands of the task (e.g., conditions 
without F0 cues) whereas b-band decreases, reflecting easier and/ 
or more successful memory template matching (e.g., clean speech 
conditions). 

4.3. On the additivity vs. interactions of cues for concurrent sound 
segregation 

Notably, while EEG measures showed a correspondence with 
behavior for double vowel identification, we did not observe cor-
relations between neural measures and QuickSIN scores. However, 
this might be expected given differences in task complexity and the 
fact that the former was recorded during electrophysiological 
testing while the latter was not. Nevertheless, these findings 
corroborate our previous studies and suggest that mechanisms that 
exploit sequential and concurrent auditory streaming are likely 
independent (or at least different) from the mechanisms recruited 
for complex speech in noise recognition (Alain et al., 2017; Hutka 
et al., 2013). For example, the QuickSIN may rely more on cogni-
tive (rather than perceptual) processes, such as attention, working 
memory, and linguistic processing, while double-vowel identifi-
cation tasks used in the present study are more perceptual-based. 
Future work is needed to explore the relationship (or lack 
thereof) between concurrent speech segregation and more gener-
alized speech-in-noise recognition tests. 

The differential changes in oscillatory q-, b-, and g power and F0 
x SNR interaction in a- and b-bands illustrates potential differences 
in the brain mechanisms supporting speech segregation that are 
largely divisible into high- and low-frequency brain rhythms. The 
neural interaction of pitch and noise that are circumscribed to a-
and b-bands and in the earliest time windows (~150e200 ms) is 
consistent with our previous ERP studies which revealed significant 
F0 x SNR interactions in concurrent vowel encoding and perception 
in the timeframe of the N1-P2 complex (Bidelman and Yellamsetty, 
2017). Overall, we found that different acoustic factors (SNR vs. 
noise) influenced the neural encoding of speech dynamically with 
interaction effects early but additive effects occurring later in time. 
Our results are partially in agreement with the additive effects on 
concurrent vowel perception shown by Du et al. (2011), who sug-
gested that listeners rely on a linear summation of cues to accu-
mulate evidence during auditory scene analysis. Indeed, our data 
show that high- (g) and low- (q) frequency responses carry inde-
pendent information on speech processing later in time 
(>300e400 ms). However, our results further reveal that acoustic 
cues (here SNR and F0) can interact earlier (~100e200 ms; Fig. 3C) 
to impact double vowel processing. Notably, Du et al. (2011) study 
investigated the effects of F0 and spatial location on concurrent 
vowel perception. Given that spatial and non-spatial (cf. F0) cues 
are largely processed via independent information channels of the 
brain (i.e., dorsal and ventral pathways) (Arnott et al., 2004), 
acoustic differences among sources might be expected to combine 
linearly as reported in that study (Du et al., 2011). In contrast, our 
behavioral and electrophysical results suggest acoustic cues that 
affect the inherent acoustic representation of speech signals (i.e., 
pitch and noise) can actually interact fairly early in the time course 
of speech segregation and are not processed in a strictly additive 
manner (Bidelman and Yellamsetty, 2017). 
4.4. Directions for future work 

Previous ERP studies have shown success in identifying con-
current vowels improves with training accompanied by decreased 
N1 and P2 latencies and enhanced P2 peak amplitude (Alain, 2007; 
Alain et al., 2007). In future extensions of this work, it would be 
interesting to examine how the weighting of neural activity 
changes across frequency bands with perceptual learning. For 
example, a testable hypothesis is that neural changes in lower 
frequency bands might accompany top-down automatization dur-
ing successful learning. We would also predict that higher fre-
quency bands would begin showing improved signal coding with 
task repetition and increased familiarity with the incoming signal. 
Another interesting study would be to investigate multiple 
competing streams and how attention might modulate concurrent 
speech segregation (Ding and Simon, 2012; Krumbholz et al., 2007). 
Future studies are needed to test the role of band-specific mecha-
nisms of the EEG in relation to short-term speech sound training, 
learning, and attentional effects on concurrent speech segregation. 

5. Conclusions 

By measuring time-frequency changes in the EEG during double 
vowel identification, we found band-specific differences in oscil-
latory spectral responses which seem to represent unique mecha-
nisms of speech perception. Over the 200 ms stimulus duration, 
early envelope tracking of the stimulus duration (onset/offset) was 
observed in higher frequency oscillations of the g band. This was 
followed by stronger desynchronization (suppression) in the mid-
frequency b oscillations around (~250e350 ms). Finally, differ-
ences in lower frequency q oscillations were more pervasive and 
persisted across a larger extent of each trial (~400e500 ms after 
stimulus onset). We infer that early portions of time-frequency 
activity (higher-bands) likely reflect pre-perceptual encoding of 
acoustic features and follow the quality of the speech signal. This 
capture of stimulus properties is then followed by post-perceptual 
cognitive operations (reflected in low EEG bands) that involve the 
degree of listening effort and task demands. Tentatively, we posit 
that successful speech segregation is governed by more accurate 
perceptual object construction, auditory template matching, and 
deceased listening effort/attentional allocation, indexed by the g-, 
b-, and q-band modulations, respectively. 
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