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Abstract— Mild cognitive impairment (MCI) is the prelim-
inary stage of dementia, which may lead to Alzheimer’s dis-
ease (AD) in the elderly people. Therefore, early detection of 
MCI has the potential to minimize the risk of AD by ensuring 
the proper mental health care before it is too late. In this 
paper, we demonstrate a single-channel EEG-based MCI 
detection method, which is cost-effective and portable, and 
thus suitable for regular home-based patient monitoring. 
We collected the scalp EEG data from 23 subjects, while 
they were stimulated with five auditory speech signals. 
The cognitive state of the subjects was evaluated by the 
Montreal cognitive assessment test (MoCA). We extracted 
590 features from the event-related potential (ERP) of the 
collected EEG signals, which included time and spectral 
domain characteristics of the response. The top 25 features, 
ranked by the random forest method, were used for classifi-
cation models to identify subjects with MCI. Robustness of 
our model was tested using leave-one-out cross-validation 
while training the classifiers. Best results (leave-one-out 
cross-validation accuracy 87.9%, sensitivity 84.8%, speci-
ficity 95%, and F score 85%) were obtained using support 
vector machine (SVM) method with radial basis kernel (RBF) 
(sigma = 10/cost = 102). Similar performances were also 
observedwith logistic regression (LR), further validating the 
results. Our results suggest that single-channel EEG could 
provide a robust biomarker for early detection of MCI. 

Index Terms— Electroencephalography, event-related 
potential, mild cognitive impairment, speech-evoked brain 
responses. 

I. INTRODUCTION 

MEMORY impairment due to aging is common. How-
ever, if the level of impairment progresses beyond what 

is expected in normal aging, mild cognitive impairment (MCI) 
can ensue [1]. MCI is a prodromal state of cognitive aging 
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between changes deriving from natural/normal aging and 
dementia [2], [3]. Alzheimer’s disease (AD) is the most 
prevalent dementia [4]–[7] among elderly population [1], [3] 
in many countries, and it is accompanied by progressively 
worsening memory, reasoning, and other aspects of cogni-
tion [7], [8]. As the MCI is a preliminary stage of cognitive 
impairment, most often it is not treated properly despite the 
fact that there is up to 54% chance that MCI may lead to 
AD or related dementias [8]. The cost of providing care for 
the AD patients in the US was $200 billion in 2012 and it 
is estimated to grow to $1.1 trillion per year by 2050 [9]. 
Therefore, preventing this disease is of great importance for 
better healthcare as well as for the national financial interest. 
Early MCI detection may play a critical role to enhance the 
management of the AD and dementia care as the root cause 
of this neurodegenerative disease is still unclear. 

Detection and characterization of MCI is an active field 
of research. Various physiological data such as resting-state 
functional magnetic resonance imaging (rs-fMRI) [4], struc-
tural magnetic resonance imaging (sMRI), diffusion tensor 
imaging (DTI) [5], positron emission tomography (PET) [10], 
fluorodeoxyglucose positron emission tomography (FDG-
PET) [11], cerebrospinal fluid (CSF) [11], [12], and mag-
netoencephalography (MEG) [13] are being investigated to 
study the effect of MCI and its underlying biomarkers. 
Although these physiological data provide multi-dimensional 
information about the brain, these methods are costly and 
also impractical in terms of portability. Low cost spontaneous 
speech data had been used by researchers to detect MCI 
or AD [14]–[17]. Relatively low-cost electroencephalography 
(EEG) is also being investigated to detect [2], [7], [18]–[23] 
and classify [21] MCI from other diseases that affect the 
cognitive state. Multi-channel EEG data have been used to 
characterize MCI or AD using EEG signals in various liter-
ature such as: (i) mismatch negativity (MMN) and auditory 
P300 component from 256-channel EEG [2], (ii) features 
extracted by recurrence quantification analysis (RQA) and 
cross recurrence quantification analysis (CRQA) from 
14-channel EEG [21], (iii) spectral features extracted from 
19-channel EEG [7], (iv) auditory P2 component computed 
from 64-channel EEG [22], (v) the auditory mismatch nega-
tivity (MMN) from 19-channel EEG [23], (vi) event-related 
potential (ERP) amplitude and latency from 256-channel 
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EEG [24], (vii) accuracy and response time during low 
and high working memory conditions of memory task using 
32-channel EEG [19] etc. Non-ERP based multi-channel EEG 
approach has also been investigated to detect MCI, e.g. using 
data from a 19-channel EEG system [20]. Although multiple 
studies based on multi-channel EEG data are available in 
the literature, to the best of our knowledge, none of the 
studies attempted to use single-channel EEG data for the MCI 
detection and classification. 

In this study, we have used single-channel EEG data from 
Fpz (near forehead) as this location is considered optimal 
for analyzing auditory evoked potential [25]–[27] to classify 
between MCI and normal functioning individuals using five 
sound stimuli for better sensitivity in MCI detection [24], [28]. 
This kind of system can be integrated into the wearable 
headband (i.e. MUSE™ headband with a mobile application), 
which will allow the assessment of cognitive strength. It is 
important to mention that EEG data may be affected by differ-
ent types of artifacts such as ocular, muscle, electrode artifacts, 
which can be removed using either multi-channel [29] or 
single-channel [30], [31] EEG data. Therefore, studying EEG 
data obtained from a single-channel is not hindered by the 
artifacts that might degrade the quality of the EEG signal. 
Initial findings of this study were reported elsewhere [32]. 
In this paper, we provide our complete and comprehensive 
study results. 

II. METHOD 

We designed our experiments with five contrastive speech 
sounds along a vowel continuum (/a/ vs. /u/) [33]. This vowel 
continuum were played sequentially, and the subjects were 
requested to identify the sounds while their EEG data was 
collected. We obtained 590 features from the ERP extracted 
from the EEG signal, which included time domain and spectral 
domain characteristics from the windowed ERP data. The 
top 25 features ranked by the random forest algorithm were 
used in several classification models that are widely used in 
the literature e.g. Support Vector Machine (SVM), Logistic 
Regression (LR). We described the methodology of this study 
below, which is consisted of six steps: Subjects, Experimental 
Design, Data Collection, ERP Processing, Features Extraction 
and Ranking, and Classification. 

A. Subjects 

The physiological data used in this study was collected from 
an experiment, where twenty-three older adults (age ranges 
from 52-86 years; mean ± standard deviation: 70.2 ± 7.2 yrs)  
participated. All the subjects were strongly right-handed [28] 
with no known history of psychiatric or neurological illness. 
The cognitive state of the participants was evaluated by 
the well-established Montreal Cognitive Assessment (MoCA) 
test [34]. In this assessment, among all the participants, fifteen 
older adults (8 male, 7 female) were normal (MoCA score: 
26-30), and eight participants’ (4 male, 4 female) were found 
to have MCI (MoCA score: 22-25). It is worth mentioning 
that patients having Alzheimer’s disease or severe dementia 
generate MoCA score within 11.4 to 21 [35]. The age of the 

MCI group and the control group was 74.6 ± 3.3 years, and 
67.5 ± 8.2 years, respectively (t21 = 2.34, p = 0.03). The  
chi-square test for the gender of the two groups gave a p-value 
of 0.81. The total years of formal education of the MCI, and 
normal group was 14.6 ± 3.2 years, and 17.4 ± 3.75 years, 
respectively (t21 = −1.68, p = 0.11). Participants in the study 
were compensated for their time and they gave their written 
consent under the protocol approved by the Baycrest Centre 
Ethics Committee (REB #06-31). The study was designed 
to observe the aging effect on the auditory system and to 
evaluate the cognitive state of the subjects. While recruiting 
the participants, exclusion criteria were based on age, musical 
training, handedness, and hearing loss [33]. 

B. Experiment Design 

The phonetic continuum was generated by varying the first 
formant (F1) frequency within 430 Hz and 730 Hz over 
five equal steps. Fundamental (F0), second (F2), and third 
formant (F3) frequencies were kept the same for all five 
sound tokens. The values of F0, F2, and F3 were 100 Hz, 
1090 Hz, and 350 Hz, respectively. The five-stepped vowel 
continuum (vw1-vw5) was constructed in a way so that each 
sound token of 100 ms would differ minimally acoustically, 
still be perceived categorically [36], [37]. We were aware that 
hearing loss due to aging may alter cortical auditory evoked 
potentials [25], and may influence the response; however, 
audiometric testing showed that hearing thresholds did not 
differ between groups at octave frequencies between 250 and 
4000 Hz [33], which is well beyond the bandwidth of the 
stimuli. 

C. Data Collection 

Data collection technique and response evalu-
ation were homogeneous to the studies reported 
in [25], [26], [32], [33], [36]. During EEG recording, 
participants went through 200 trials for each sound token. 
Each participant took part in the data collection twice. 
The experiment was conducted in an electroacoustically 
shielded chamber (Industrial Acoustics, Inc.). Subjects 
experienced the stimuli through earphones (ER-3A, Etymotic 
Research) in both ears at an intensity of 83 dB SPL. 
To eliminate electromagnetic stimulus artifact from corrupting 
neurophysiological responses, extended acoustic tubing 
(50 cm) was used [27], [33], [36]. Sound token came 
to subjects randomly, and they were requested to rapidly 
categorize them with a binary response (“u” or “a”) by 
pressing specific buttons on the keyboard. In this study, 
their response does not matter as we were only interested 
to see how the ERP changes with different stimulus. 
However, we wanted them to focus while the stimulus was 
applied. This was done to make sure that the resulting 
ERP is produced only due to the applied stimulus. Each 
sound token was 100 ms duration with 10 ms of rise 
and fall time to reduce the spectral splatter [25]. After the 
participants’ response, an inter-stimulus interval (ISI) followed 
randomly between 400 and 600 ms (20-ms steps, rectangular 
distribution) to avoid subjects anticipating subsequent 
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Fig. 1. Visualization of the ERP at different auditory stimuli. Left: 
individual response for the auditory stimulus vw1, vw2, vw3, vw4, and, 
vw5 of a normal subject; right: comparison between the ERPs of two 
subjects that belong to the Normal and the MCI group. ERP responses 
in the case of four auditory stimulus vw1, vw2, vw3, vw4 are visualized. 

stimuli [38]. SynAmps RT EEG amplifiers (Compumedics 
Neuroscan, Charlotte, NC, USA) were used to capture EEG 
data. EEGs was recorded differentially between an electrode 
placed on the high forehead at the hairline referenced 
to linked mastoids. To record auditory evoked potentials 
from the cortical origin, this montage (∼Fpz-A1/A2) is 
considered optimal [36], [39], [40]. Throughout the duration 
of the experiment, contact impedances were maintained 
below 3 k, and the EEG signal was captured at 20 kHz 
sampling rate and then filtered by a band pass filter having 
passband within 0.05 Hz – 3500 Hz. 

D. Event-Related Potential Processing 

EEG data were processed using ERPLAB, an open source 
toolbox, which runs in the MATLAB environment [41]. 
An interval of 700 ms (100 ms pre-stimulus and 600 ms post-
stimulus) constituted an EEG epoch as shown in Fig. 1 [32]. 
The left part of Fig. 1 represents five grand average ERP from 
a normal subject due to five auditory stimuli. The right part of 
Fig. 1 contains the comparison between the ERPs of Normal 
and MCI group. The pre-stimulus region was used for baseline 
correction, where the subtraction method [42] was used. Trials 
exceeded ±50 μV were excluded from the analysis as they 
were probably contaminated by different artifacts such as 
eye-blinks, eye-movements etc as mentioned in [30], [31]. 
For each auditory stimulus, artifact-free epochs were used to 
calculate the grand average ERP. Finally, the grand average 
ERP is bandpass filtered from within (0-30) Hz because of a 
priori knowledge of the ERP bandwidths and the stimuli [26], 
[32], [33], [36], [40], [43]. It is to be noted that data from 
the different subjects do not go into the ERP calculation, 
rather each subject has its own ERP, which is calculated from 
the 200 trials of two sessions. 

E. Features Extraction and Ranking 

We extracted total 590 candidate features from the ERP 
prominent points and the time and spectral domain char-
acteristics, and used top 25 features in the classification 
models, which were ranked by the random forest algorithm. 
In the cortical auditory evoked responses, prominent ERP 
points seem to have discriminatory power between normal 

Fig. 2. Schematic of the feature extraction process: (a) and (c) are 
slopes and (b) and (d) are covariances for two different time windows 
from timestamp t1 to t2. 

and MCI stage [22] in the older adults. For that reason, 
we included the ERP prominent points in the candidate feature 
vector (CFV). The ERP prominent points such as Pa, P1, N1, 
and P2 were defined as the peak points between the intervals 
[25 ms - 35 ms], [60 ms – 80 ms], [90 ms – 110 ms], and 
[150 ms - 250 ms] respectively [32] as shown in Fig. 2. 
The peak amplitudes and their respective latencies of these 
prominent points, and the mean amplitudes of the intervals 
containing the prominent points were also included in the CFV 
because of their known importance in separating groups in the 
experiments involving evoked responses [44]. Relative powers 
in the EEG bands [i.e. delta (0-4)Hz / theta (4-7)Hz / alpha 
(8-12)Hz / beta (12-30)Hz] were also useful in classifying 
normal, mild cognitive impaired, and Alzheimer’s’ disease 
group [45]; thereby, included in the CFV. We used band-
power.m function of MATLAB to compute the relative power. 
Total 16 features were calculated from the ERP prominent 
points from each stimulus, which resulted in total 80 feature 
points in the CFV. As the ERP changes rapidly with time 
within the window over which the stimulus is applied, it was 
important to track the variation of the time-domain characteris-
tics in high-resolution. In order to accomplish that, we applied 
a 25ms window, with a 50% overlap through the entire ERP 
signal (i.e. 700ms EEG epoch) as depicted in Fig. 2. 

The sliding window allowed us to observe the variation of 
the time domain properties, which has shown significance in 
classifying MCI and normal subject in earlier studies [33]. 
Total 107 time-domain characteristics such as signal statistics, 
correlation properties, entropies, etc. from each window were 
calculated using the opensource software package “HCT-
SAtool” [46], [47] written in Matlab. For the details of the 
extracted time domain characteristics, please see [46], [47]. 
The authors of [46], [47] also provided the documentation 
of the HCTSA tool [50] for the detail explanation of the 
time-domain characteristics. Among available properties in the 
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TABLE I 
MODELS SELECTED FOR OBSERVING AGGREGATED SOUND FEATURES’ PERFORMANCE 

Fig. 3. Feature ranking and feature subset selection. 

HCTSA tool, we have considered four categories such as: 
(i) Distribution, (ii) Correlation, (iii) Entropy and information 
theory, and (iv) Basics statistics and trend [other groups are 
not applicable for the EEG signal]. 

To calculate the variation of the time-domain characteris-
tics over time, we computed the slope and the coefficient 
of variation (CV), which constituted two feature points at 
each time-stamp for each stimulus. The feature points that 
had intra-class similarity and inter-class variability (judged 
by visual inspection) were included in the CFV. For exam-
ple, Fig. 2(a &b) show the slope and CV of one of the 
time domain characteristics (computed by the HCTSAtool 
known as “proportion of data within two-standard deviation 
of mean [46]–[48]”) for the normal and the MCI group, 
respectively. Here we observed that this feature point was 
different for two classes and the shaded regions depict that 
there was an intra-class similarity, but this feature was dif-
ferent between the classes (i.e. interclass variability), thereby 
selected as a feature point in the CFV. Similarly, the slope 
and CV shown in Fig. 2 (c&d) at a different timestamp also 
have intra-class similarity and inter-class variability, which 
fulfill their requirement to be in the CFV. Among all the 
time-domain feature points, 510 such feature points met the 
condition as mentioned above and were included in the 
CFV. 

All 590 features of the CFV (i.e. 80 from the prominent 
points and 510 from the time-domain characteristics) were 
ranked by the random forest algorithm [49], and top 25 fea-
tures were used in the classification models. The reason for 
taking top 25 features can be explained by Fig. 3. We obtained 
the highest cross-validation accuracy while using top 25 fea-
tures and then it decreased at a higher number of features. 
The random forest algorithm was implemented using the 
“randomForest” package of R. In the random forest algorithm, 

total 590 trees were constructed and at each split, 50 randomly 
sampled features were considered. To demonstrate the efficacy 
of the feature ranking process by random forest, we also 
demonstrated the results obtained by SVM at different number 
of features in Fig. 3. The SVM algorithm was implemented 
using “fitcsvm” module of MATLAB and radial basis kernel 
was used (C = 102, sigma  = 103). We observed that the SVM 
also gave the highest cross-validation accuracy while using 
top 25 features. Among 25 features, there are four features 
related with the prominent points of the ERP and rest of them 
are related with the statistical properties of the ERP extracted 
with the opensource software package “HCTSAtool” (Fulcher, 
Little, & Jones, 2013) written in Matlab. In the statistical 
properties related features, seven are related with entropy, 
twelve are related with the mean, and one is related with mean 
absolute deviation. Feature ranking helped us to reduce the 
number of features in final implementation and it helped to 
keep the computation cheap and also to reduce the probability 
of overfitting the data. 

F. Classification 

In this study, we used support vector machine (SVM), and 
logistic regression (LR) as they have already been used in the 
study related with EEG/ERP [49] data, and at the same time 
inference from these algorithms were computationally effi-
cient. We used “fitcsvm” module of MATLAB to implement 
the support vector machine (SVM), and “liblinear” package 
of Weka 3.7 to implement the logistic regression (LR). In the 
SVM grid search, we implemented polynomial and radial basis 
kernel, and varied the cost, C = {10−2 , 10−1 , 1, 101 , 102}. 

The degree and sigma used in the case of polynomial and 
RBF kernel, respectively are reported in TABLE I. Similar 
approach was followed while LR grid search was imple-
mented. For the detail grid search parameters, please see 
TABLE I. 

It was necessary to find a model that balances between 
bias and variance to prevent overfitting and ensure general-
ization. Preventing overfitting is especially challenging if the 
sample size is small. To overcome this challenge, we fol-
lowed the approach of [26] that means we used leave-one-
out cross-validation set fixed for all classifiers (SVM, LR). 
In leave-one-out cross validation, the model is trained with 
N-1 samples and tested by the Nth sample.  This process is  
repeated for all N samples. The experimental setup, EEG pre-
processing, feature extraction, and classification method are 
summarized through a flowchart in Fig. 4. 
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Fig. 4. Flow diagram of the algorithm. 

Fig. 5. Performance evaluation of SVM models: Leave-One-Out Cross 
Validation accuracy of Polynomial kernel (a) d = 2, (b) d = 3, (c) d = 4, 
Leave-One-Out Cross Validation accuracy of RBF kernel (d) σ = 10, 
Support vector ratio and Sensitivity of Polynomial kernel (e) d = 2, 
(f) d = 3, (g) d = 4, Support vector ratio and Sensitivity of RBF kernel 
(h) σ = 10. 

III. RESULTS 

To evaluate the classification models, we observed the key 
performance attributes such as leave-one-out cross-validation 
accuracy, sensitivity of the positive class (i.e. MCI group), and 
support vector ratio (SVR) (when applicable) in our SVM/LR 
grid search. In Fig. 5, we demonstrate the variation of the 
performance metrics in the case of the SVM for both the 
polynomial (d = 2, 3, and 4), and the RBF (σ = 10) kernels. 

The top row of Fig. 5 shows the variation of the leave-
one-out cross-validation accuracy with respect to the cost 

Fig. 6. Performance evaluation of LR models: (a) Sensitivity of L1 and 
L2 regularization, Leave-One-Out Cross-Validation accuracy of (b) L1 
regularization, (c) L2 regularization. 

TABLE II 
PERFORMANCE OF SVMSIGMA10C100 MODEL SELECTED FOR 

OBSERVING AGGREGATED SOUND FEATURES’ PERFORMANCE 

TABLE III 
STIMULUS RANK 

parameters, C = {10−2 , 10−1 , 1, 101 , 102 . The results show 
that with the increase ofC , both the leave-one-out cross-
validation accuracy initially increases and reaches at the max-
imum for the optimal values of C . In  Fig. 5(a), Fig. 5(b) and 
Fig. 5(c), the cross-validation accuracy reaches the maximum 
point and did not change later with the increment in C. 
The optimal C also provides the highest sensitivity and the 
lowest SVR as shown in the bottom row of Fig. 5 (exception 
for Fig. 5(e), the sensitivity increased after the optimal C). 
Lower support vector ratio ensures the model’s stability with 
respect to the overfitting. The variation of the sensitivity, 
and, leave-one-out cross-validation accuracy with respect to 
the cost parameter, C = {10−2 , 10−1 , 1, 101 , 102 in the 
case of LR for both the L1 and L2 regularization is shown 
in Fig. 6. Likewise, SVM, the variation of the leave-one-
out cross-validation accuracy, and sensitivity follow similar 
trend with C , and becomes maximum for the optimal value 
of C . 

We observed that SVMSigma10C100 works best among all 
the models considered here. The performance attributes for the 
best classification models for different cases are summarized in 
TABLE II. These observations suggest that the selected feature 
vector is robust to multiple classification models in classifying 
between the normal and the MCI group. 

In order to investigate the impact of different sounds used in 
the experiment, we used features collected from each sound in 
our classification models. The results obtained with the best 
models are summarized in Fig. 7. The sounds were ranked 
according to the leave-one-out cross-validation accuracy, sen-
sitivity for MCI, and F score in TABLE III. We observed that 



1068 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 27, NO. 5, MAY 2019 

TABLE IV 
LITERATURE SUMMARY 

Fig. 7. Comparison of performances among auditory stimulus. 

the clear sounds (vw1: /u/, vw4, and vw5: /a/) are perceived 
differently by the normal and impaired individuals and thereby 
are a better candidate to be used for future study related to 
MCI detection. 

IV. DISCUSSION 

Multi-channel EEG data with auditory stimulus is proven 
to work to classify between MCI and HC [20], [23]. From 
this study, we observed that even single-channel EEG data 
with auditory stimulus has the potential to classify between 
the MCI and HC. It was reported in previous studies that 
there are differential properties in the ERP responses between 
the MCI and HCs due to auditory stimulus. For example, 
Pekkonen et al., (1994) [50] reported that dementia patients 
have faster decay in auditory sensory memory than the age-
matched controls, which gets reflected in the mismatch neg-
ativity (MMN) (a component measured from ERP). In our 
previous study (Bidelman et al., (2017) [33]), we observed that 
prefrontal dysfunction via efferent connections or abnormali-
ties within the ascending auditory pathways may be related to 
MCI. Due to these reasons. We believe that the EEG signal 
collected from the frontal lobe (Fpz channel) has proven to be 
useful in the MCI detection. Additionally, we observed that 
the choice of auditory signal is also important. We found that 
ambiguous stimulus has less performance than non-ambiguous 
stimulus in the classification. 

We tabularized our result with the existing work in the 
literature in TABLE IV. Expensive sMRI, FDG-PET, CSF, 
fMRI, DTI, PET data achieved more than 90% accuracy in 
discriminating MCI vs HC in multiple studies [5], [10]–[12]. 

Low- cost speech data also showed promising performance 
in this area [15]. Relatively low-cost multi-channel EEG data 
also demonstrated comparable accuracy ([20], [23] obtained 
around 88.9% accuracy in differentiating MCI and HC). 
Our single-channel EEG-based MCI classifier, which obtained 
87.9% accuracy, further demonstrates the significance of the 
EEG data in MCI study. 

Our results are comparable to those observed with 
multi-channel EEG, and fMRI-based techniques in terms of 
classification accuracy, sensitivity, and specificity. This sug-
gests that our single- channel based method may provide an 
alternative way of MCI detection, which is easy-to-use, and 
cost-effective. 

The primary goal of this work is to investigate the 
use of the single-channel EEG data in detecting the 
early cognitive impairment to support the wearable tech-
nology. As we mentioned earlier in the discussion section, 
multi-channel EEG and other physiological data have proven 
to be a reliable source for the MCI detection; however, 
the idea of using the single-channel EEG data in deter-
mining complex neurological phenomena is relatively new. 
We believe that our work will motivate further study in this 
area. 

In MRI technique, a patient needs to lie in the MRI scanner 
(a very large, strong magnet) and a radio wave is used to send 
signals to the part of the body of interest and receive them 
back. A computer attached to the scanner converts the return-
ing signal into images. In PET technique, a patient swallows, 
inhales, or gets injected by radioactive tracer and then lies 
under a big PET scanner for generating PET image for diag-
nosis. fMRI uses the same basic principles as MRI. However, 
MRI scans anatomical structure whereas fMRI scans metabolic 
function. DTI, and sMRI also have similarities with MRI tech-
nique. High-density multichannel EEG setup requires a patient 
to sit in a quiet environment for a certain time determined 
by the study for data collection. All the techniques discussed 
so far here can only be employed in a hospital environment 
but not in wearable or portable devices. Conversely, the tech-
nique discussed in this paper can be implemented in a home 
environment. 
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V. CONCLUSION 

In this study, we targeted to find a solution in the MCI detec-
tion using minimalistic, non-invasive, and low-cost approach 
–via ERP responses from the scalp EEG data. We selected 
existing algorithms such as SVM, LR and extracted fea-
tures from time and frequency domain responses during 
speech processing responses reflected in the single-channel 
EEG data obtained from Fpz location. We observed that the 
top 25 ranked features ranked by the random forest method 
performed well with most of the classification models. Based 
on the best performances from the SVM model, we can pre-
dict MCI with 87.9% leave-one-out cross-validation accuracy, 
84.8% sensitivity, and 95% specificity. In the future, this study 
can be expanded to real-time implementation of the system 
with the hardware-software implementation. 
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