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Abstract 
Objective: Recently, we developed a metric to objectively detect human auditory evoked potentials based on the mutual information (MI) 

between neural responses and stimulus spectrograms. Here, the MI algorithm is evaluated further for validity in testing the auditory steady-

state response (ASSR), a sustained potential used in objective audiometry. Design: MI was computed between spectrograms of ASSRs and 

their evoking stimuli to quantify the shared time-frequency information between neuroelectric activity and stimulus acoustics. MI was 

compared against two traditional ASSR detection metrics: F-test and magnitude-squared coherence (MSC). Study Sample: Using an 

empirically derived threshold (@MI¼1.45), MI was applied as a binary classifier to distinguish actual biological responses recorded in 

human participants (n¼11) from sham recordings, containing only EEG noise (i.e., non-stimulus-control condition). Results: MI achieved 

high overall accuracy (490%) in identifying true ASSRs from sham recordings, with true positive/true negative rates of 82/100%. During 

online averaging, comparison with two other indices (F-test, MSC) indicated that MI could detect ASSRs in roughly half the number of 

trials (i.e., 400 sweeps) as the MSC and performed comparably to the F-test, but showed slightly better signal detection performance. 

Conclusions: MI provides an alternative, more flexible metric for efficient and automated ASSR detection. 

Keywords: Auditory evoked potentials (AEPs); automated auditory brainstem response (AABR); 

evoked potential classification; F-test. Magnitude-squared coherence (MSC); objective audiometry 

Introduction 

Conventional auditory evoked potential (AEP) recording practice 

requires that responses be identified by the subjective interpretation 

of human observers. This subjectivity leads to biases in the 

detection and interpretation of evoked responses (Vidler & Parker, 

2004; Bogaerts et al, 2009). Recently, auditory steady-state 

responses (ASSRs) have gained popularity as they offer more 

rapid physiological assessment by allowing evaluation of both ears 

simultaneously at multiple audiometric frequencies (Lins et al, 

1995; Picton et al, 1998; John & Picton, 2000; Cone-Wesson et al, 

2002; Stroebel et al, 2007; Bhagat, 2008). ASSRs are also desirable 

because response detection is based on a statistical comparison 

between signal and noise power in the evoked potential average 

rather than human waveform inspection. This offers a fully 

objective means to assess ASSR signal quality and remove human 

subjectivity from electrophysiological assessment. 

Objective evaluation of the ASSR is typically performed in 

the frequency domain where a test statistic [e.g., F-test and 

magnitude-squared coherence (MSC)] is applied to the  ASSR  

spectrum to determine the probability of whether a response is 

present at the stimulus frequency relative to the surrounding noise 

floor (Dobie & Wilson, 1996; John & Picton, 2000; Vidler & Parker, 

2004; Sturzebecher & Cebulla, 2013). These statistics become more 

powerful with increasing number of sweeps. Consequently, a stopping 

rule can be applied when a criterion significance level is achieved 

(typically p50.01). Both the F-test and MSC provide robust statistical 

power for detecting the presence of the ASSR (Champlin, 1992; Dobie 

& Wilson, 1996) and can be used ‘‘online’’ as an automated stopping 

rule for signal averaging—saving valuable time in clinical testing. 

Yet, these current metrics are somewhat limited in that they are 

specific to the evoking stimulus (e.g., sinusoidally amplitude 

modulated (SAM) tones). With more complex stimuli (e.g., multi-

frequency SAM tones, time-varying speech), response detection would 

require incorporating multiple test statistics applied to each stimulus 

frequency of interest. Alternate objective indices might be more 

sensitive and flexible to detect the ASSR and other sustained AEPs. 
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Recently, we have developed a fully objective and automated 

algorithm for the detecting the speech-evoked brainstem frequency-

following response (FFR) (Bidelman, 2014). Our detection metric is 

based on the statistical comparison between the spectrographic 

representations of the stimulus signal and neural response which we 

adopted from information theory and image processing: mutual 

information (MI). This metric quantifies the spectral similarity 

between stimulus and neural response spectrograms. Spectrograms 

are advantageous for assessing AEP signal quality because they 

provide a three-dimensional representation of the neural activity 

(time, frequency, amplitude) and thus, a higher dimensionality of 

detail than a 2D time-waveform alone. In our previous study, we 

showed that MI could be used as a robust means to objectively 

detect not only the presence but also signal quality of the speech-

evoked FFR with 97% true positive rate and 85% true negative rate 

(Bidelman, 2014). The metric was also useful as a stopping rule for 

signal averaging and demonstrated that 1500 sweeps were 

adequate to detect the speech-FFR with a signal-to-noise ratio 

(SNR) of +3 dB (Bidelman, 2014). Moreover, the metric can be 

applied to time-varying signals and thus generalizes well across 

AEP classes and eliciting stimuli. 

Given the increased popularity and clinical utility of the ASSR 

(e.g., Picton et al, 1998; John & Picton, 2000; Cone-Wesson et al, 

2002; Stroebel et al, 2007; Bhagat, 2008), the aim of the present 

study was to further validate MI (Bidelman, 2014) as an objective 

metric for broader AEP evaluation and use in detecting ASSR 

responses to SAM-tone stimuli. We endeavored to assess the MI 

metric’s ability to identify recorded ASSRs (true biological 

responses) from sham recordings (containing no biological 

response). We then compared the proposed MI metric for use as 

an ‘‘online’’ stopping criterion for signal averaging against two 

other well-established frequency-domain ASSR detection indices: 

magnitude-squared coherence (MSC) (Dobie & Wilson, 1989; 

Champlin, 1992) and the F-test (Dobie & Wilson, 1996; John & 

Picton, 2000). These three metrics were tracked on a sweep-by-

sweep basis to determine differences in their stopping rule (i.e., 

efficiency) for signal averaging. Comparable or better performance 

of the proposed MI measure compared to current detection metrics 

would support broad efficacy of the MI across AEPs and a potential 

alternative to other objective ASSR detection approaches. 

Experiment 1: MI for ASSR detection 

Methods 
PARTICIPANTS 

Eleven normal-hearing young adults (11 female; age: 20–28 yrs) 

participated in Experiment 1. All participants had normal hearing 

thresholds (25 dBHL, 250–8000 Hz) bilaterally. Each gave 

written-informed consent in compliance with a protocol approved 

by the Louisiana State University Institutional Review Board. 

STIMULI 

Stimuli were SAM tones with a carrier frequency (fc) of 1000 Hz 

and modulation frequency (fm) of 40 Hz (100% modulation depth). 

Eight cycles of the 40-Hz modulation were recorded. Stimuli were 

delivered monaurally to the right ear using Eartone-3A inserts at 

70 dB SPL. 

ASSR RECORDINGS AND ANALYSIS 

ASSRs were recorded differentially between electrodes placed on 

the vertex (Cz) and right earlobe (A2) (mid forehead ¼ ground). 

Interelectrode impedances were 3 k. Electrophysiological 

recordings were collected with BioSig (Tucker Davis 

Technologies). Recordings were amplified and bandpass filtered 

(10–200 Hz, 6 dB/octave rolloff. ASSRs were digitized at 10 kHz 

over a 204.8 ms epoch (window). Sweeps containing voltages490% 

of the A/D converter’s dynamic range were rejected prior to 

averaging. Final average ASSR waveforms contained 512 sweeps. 

In addition to SAM tone stimulation, sham recordings were also 

obtained from each subject. Sham runs were identical to ASSR 

recordings with the exception that the insert headphone was 

removed from the ear canal, thus preventing stimulus delivery to 

the participant but allowing the continued recording of EEG noise 

(e.g., Aiken & Picton, 2008; Bidelman, 2014). 

ASSR and sham traces were analyzed using the Fast Fourier 

Transform (FFT) to index spectral content of the scalp potentials. 

Magnitudes were measured from response spectra, relative to the 

noise floor, at the fundamental and harmonics of the modulation 

response (i.e., 40, 80, 120, 160 Hz). Comparison of spectral 

magnitudes allowed us to verify the presence (ASSR) and absence 

(sham) of a neural response. Post-processing and analyses were 

performed using custom routines coded in MATLAB 2014b (v. 8.4). 

MUTUAL INFORMATION (MI) DETECTION METRIC 

We computed the mutual information (MI) between spectrographic 

representations of the stimulus and ASSR to index the degree to 

which neural responses captured spectrotemporal details of the 

acoustic input (Bidelman, 2014). MI is a dimensionless quantity 

(measured in bits), which quantifies the degree of shared informa-

tion (i.e., mutual dependence) between two variables. Said differ-

ently, it reflects the reduction in uncertainty that knowing either 

signal provides about the other. For two random variables (A and B), 

MI is computed as Eq. 1: 

MI A, Bð Þ ¼ 
X
a2A 

X 

b2B 

p a, bð Þ log 
pða, bÞ 

pðaÞpðbÞ 

  

ð1Þ 

where p a, bð Þ is the joint probability of A and B, and pðaÞ and p bð Þ  
are the marginal probabilities of A and B, respectively. In the 

specific case where A and B are two images (e.g., spectrograms), MI 

can be interpreted as the distance between the joint distribution of 

the images’ grayscale pixel values p(a, b) and the distributions for 

two independent images, p(a)p(b) (see SI material for further 

details). Applied here, MI quantifies the degree to which neural 

responses capture the collective time-frequency characteristics of 

Abbreviations 

AEP auditory evoked potential 

ABR auditory brainstem response 

ASSR auditory steady-state response 

FFR frequency-following response 

FP false positive (i.e., ‘‘false alarm’’); FPR, false positive rate 

FN false negative (i.e., ‘‘miss’’); MI, mutual information 

MSC magnitude-squared coherence 

SAM sinusoidal amplitude modulation 

TP true positive (i.e., ‘‘hit’’); TPR, true positive rate 

TN true negative (i.e., ‘‘correct rejection’’) 
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the stimulus based on comparison between stimulus and response 

spectrograms (Bidelman, 2014). 

MI was computed between the stimulus and each response 

spectrogram allowing us to assess the degree to which neural 

responses reflected spectrotemporal properties of the evoking stimu-

lus. In response to a SAM tone, rectification in the cochlear haircell 

transduction process produces a response at the modulation/envelope 

frequency (here 40 Hz) that is captured in the scalp-recorded potential 

but is not present in the stimulus itself (Lins et al, 1995; John & 

Picton, 2000). Hence, comparisons between raw stimulus and 

response spectrograms would show large discrepancy near the 

frequency of interest (40 Hz), leading to artificially low MI. To 

circumvent this natural disparity between stimulus and response 

spectra, we half-wave rectified the stimulus waveform prior to 

spectrographic analysis—a common operator to model nonlinear 

haircell transduction bias (e.g., Oxenham et al, 2004). This ensured 

that both the stimulus and response time-frequency representations 

contained prominent energy at the modulation frequency (here 40 Hz). 

Note however, that we do not further scale this operator to avoid 

manipulating the amount of simulated rectification and potential false 

optimization of MI. While stimulus rectification is necessary here 

given the use of highly stereotyped SAM stimuli, for more complex 

stimuli (e.g., speech tokens), we have found that in practice, half-wave 

rectification is unnecessary to compute a valid MI (Bidelman, 2014). 

In our previous study (Bidelman, 2014), we made no a priori 
assumptions regarding an acceptable threshold for MI in use as a 

detection metric for AEPs. A criterion threshold was determined 

empirically using computational modeling and responses at known 

SNRs. For the detection of speech-evoked FFRs (e.g., Bidelman & 

Krishnan, 2010), we found that a threshold MI¼1 (corresponding to 

an SNR of +3 dB) provided robust classification characteristics 

(97% true positive rate, 85% true negative rate) for discriminating 

true biological FFRs from noise-sham recordings. While this 

criterion was appropriate for sustained FFRs to speech stimuli, it 

was unclear in the present study if the same threshold would be 

appropriate for the non-speech stimuli used here for traditional 

ASSRs (i.e., SAM tones). Thus, a criterion threshold was 

determined empirically by comparing the d-prime between ASSR 

and sham responses as a function of the lowpass filter cutoff 

frequency applied to the response. Maximal segregation of true 

from sham responses was observed with a cutoff of 200 Hz. This 

filter setting is optimal as it corresponds with the upper cutoff of the 

original recordings (10-200 Hz) but still passes the most salient 

harmonics of the ASSR response (e.g., 40, 80 120 Hz). The resulting 

criterion MI (MI¼1.45) was applied to all subsequent analyses. 

MI CLASSIFIER PERFORMANCE METRICS 

Once determined empirically, yMI was applied as a binary classifier 

to ASSR and sham recordings. Traces yielding MI  yMI were 

classified as neural responses whereas recordings with MI 5 yMI 

were considered to be noise, i.e., no response (Bidelman, 2014). 

Classifier performance was evaluated by computing standard 

metrics used in signal detection theory (d-prime) and receiver 

operating characteristics (ROC) including true and false positive 

rates. True positive rate [i.e., TPR ¼ 100*TP/(TP + FN)] was 

computed as the percentage of actual ASSR recordings correctly 

identified; false-positive rate as the percentage of sham recordings 

erroneously classified as a biological response [i.e., FPR ¼ 100*FP/ 

(FP + TN)] (see Figure 2; Jeng et al, 2011). True negative rate 

(TNR) was computed as 1-FPR. 

Results 
ASSR SPECTROTEMPORAL PROPERTIES 

ASSR time waveforms and response spectra are shown for actual 

and sham recordings in Figure 1. Response spectra illustrate robust 

phase-locked neural activity at the 40 Hz modulation rate and its 

upper harmonics (e.g., 80 and 120 Hz) for ASSR but not sham 

recordings. Bonferroni adjusted paired t-tests (adjusted for four 

comparisons) revealed significant ASSR responses at the 40 Hz [t10 

¼ 5.76, p50.0001], 80 Hz [t10 ¼ 3.62, p¼0.0024], and 120 Hz [t10 

¼ 2.61, p¼0.0129] components relative to the noise floor amplitude 

as measured in response FFTs; responses at 160 Hz were indistin-

guishable between actual and sham recordings [t10 ¼ -3.41, p 
¼0.99] as both appeared lower than the noise floor. These findings 

confirm that the ASSRs contain robust phase-locked neural activity 

whereas sham recordings contain no biological response (nor 

stimulus artifact) and are thus suitable for use as ‘‘catch trials’’ in 

validating the proposed MI detection metric. 

MI classifier performance for identifying true ASSRs from 
sham recordings 
Figure 2 shows MI computed from actual ASSR recordings as 

well as sham traces—containing no biological response. Applying 

a threshold of MI¼1.45, only two ASSR recordings (9.1%) are 

misclassified from the n¼22 total observations (n¼11 ASSR, 

n¼11 shams). Responses were highly distinguishable from sham 

traces based on their MI [t10¼ 6.28, p50.0001] (Figure 2B). This 

was confirmed by bootstrap resampling (Efron & Tibshirani, 

1993) which showed no overlap in the 95% confidence intervals 

between the MIs of true and sham recordings [ASSR: 1.52-1.67; 

sham: 1.26-1.36]. 

Classifier performance for common signal detection and clas-

sification metrics are shown for the MI and F-test (Dobie & Wilson, 

1996; John & Picton, 2000) metrics in Table 1. See SI Material for 

definition of the F-test. [Note that MSC could not be applied on the 

waveforms in Exp 1 as this metric requires computing subaverages 

from single-trial data and only grand averages were originally 

collected for this dataset.] Overall, MI yielded 91% accuracy (9% 

misclassification) with a corresponding true positive and true 

negative rate of 82% and 100%, respectively. These values are 

corroborated by the metric’s overall true positive rate (d0 ¼ 3.23) 

and minimal bias (c¼ 0.71). These operating characteristics are 

comparable to our previous report applying the MI metric to detect 

speech-evoked FFRs (Bidelman, 2014). These performance char-

acteristics demonstrate that the mutual information between a 

stimulus and neural response provides an objective means for 

distinguishing the ASSR generated from the auditory system from 

background EEG noise. 

Experiment 2: MI as a stopping rule for ASSR 
averaging 

In Experiment 2, we investigated the application of using MI as an 

online stopping rule for ASSR signal averaging. 

Materials & Methods 
PARTICIPANTS 

Six additional normal-hearing adults (4 female; age: 28.2 ± 4.6 

years) participated in Experiment 2. All participants had normal 

hearing thresholds ( 25 dBHL, 250–8000 Hz) bilaterally. 

Automated ASSR detection 315 
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Participants gave written-informed consent in compliance with a 

protocol approved by the University of Memphis Institutional 

Review Board. 

ASSR RECORDINGS 

ASSR recording procedures and stimuli were similar to Experiment 

1. Briefly, EEGs were recorded between Ag/AgCl disc electrodes 

placed on the scalp at the high forehead at the hairline referenced to 

linked mastoids (A1/A2) (mid-forehead ¼ ground). Continuous 

EEGs were digitized at 10 kHz (SynAmps RT amplifiers; 

Compumedics Neuroscan). EEGs were then windowed [50– 

250 ms], filtered (10–200 Hz), and averaged in the time domain to 

obtain ASSR waveforms. SAM tone stimuli (see Experiment 1) 

were delivered binaurally at an intensity of 80 dB SPL through 

insert earphones (ER-2, Etymotic Research). Listeners heard 2500 

exemplars of the stimulus token presented an ISI interval of 50 ms. 

Figure 1. Auditory steady-state responses (ASSR) elicited by a 40 Hz sinusoidally modulated 1 kHz tone. (A) ASSR time-waveforms for 

true neurobiological (top) responses and sham (bottom) recordings in which the earphone was removed from the ear canal. Light traces, 

overlay of responses from individual subjects; thick dark trace, grand average. The stimulus waveform is shown in gray in the middle. (B) 

Average response spectra for true ASSR (top) vs. sham (bottom) recordings. True ASSRs show dominant energy at the modulation 

frequency (40 Hz) and integer-related harmonics (i.e., 80, 120 Hz) well above the noise floor (5). In contrast, sham recordings show no 

definable or harmonically-related response peaks (only EEG noise), confirming the absence of a neural response (or stimulus artifact) in the 

non-stimulus-control condition. 

Figure 2. MI classifier performance in distinguishing true ASSRs 

from sham recordings. (A) MI computed from ASSRs (circles) and 

sham traces (squares)—where the earphone was removed from the 

ear canal. MI values below the empirically derived threshold value 

(MI ¼1.45), are classified as noise (i.e., no response); values 

exceeding MI ¼1.45 are identified as true biological responses. 

Misclassifications are shown as open symbols. Bootstrap resam-

pling (right) shows the distribution of MI for neural and sham 

recordings for N¼ 1000 data resamples. (B) Average MI value 

computed from true vs. sham recordings. As denoted by the clear 

separation of recordings, the MI metric is able to distinguish actual 

evoked responses from EEG noise. Error bars ¼ 95% CIs computed 

via bootstrapping, ***p50.001. 

Table 1. Classifier performance characteristics for MI and F-test 
detection metricsy. 

MI F-test 

Overall performance 

Accuracy 90.91%a 95.45% 

Misclassification rate 9.09% 4.54% 

Signal detection metrics 

d-primeb 3.23 2.67 

biasc 0.71 0 

ROC 

True positive rate 81.8% 90.9% 

True negative rate 100% 90.9% 

yn¼22 total observations (n¼11 neural ASSR vs. n¼11 sham noise 

recording; 512 sweeps). 
aBased on MI ¼ 1.45 
b Computed as d’ ¼ z(H)  z(FA) from mean hit (H) and false alarm 

(FA) rates. 
cComputed as bias ¼ [z(H) + z(FA)]/2 from mean H and FA rates. 
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COMPARISON OF MI TO OTHER OBJECTIVE METRICS (F-TEST, MSC) 

To test the efficiency of MI as stopping criterion for signal 

averaging, we computed MI on a sweep-by-sweep basis as 

accumulating trials were added to the ongoing ASSR average. 

Similarly, we compared the ‘‘online’’ development of MI against 

two other frequency-domain detection metrics: (1) MI (current 

study; Bidelman, 2014), (2) F-test (Dobie & Wilson, 1996; John & 

Picton, 2000), and (3) MSC (Dobie & Wilson, 1989; Champlin, 

1992). See SI Material for definitions. Comparison between the 

three metrics allowed us to relate their performance and determine 

differences in their stopping rule for signal averaging, i.e., the 

number of trials where each index detected the presence of the 

ASSR response. Some participants’ ASSRs approached, but did not 

fully converge to the criterion threshold (treated as missing values 

in statistical analysis). 

Results 

Figure 3 shows the time-course for MSC, F-test, and proposed MI 
detection metrics with increasing sweeps. Each metric improves 

with additional trials and asymptotes as the running average 

stabilizes. 

Figure 4 shows the number of sweeps required to achieve a 

specified stopping criterion for signal averaging. Stopping criteria 

were based on a p50.01 (MSC¼0.483 and F-test) and MI ¼1.45 

(MI), respectively (Dobie & Wilson, 1989; John & Picton, 2000; 

Bidelman, 2014). A Kruskal-Wallace nonparametric ANOVA (used 

given small sample sizes) revealed a difference in terminating 

sweep between the three metrics [2(2)¼ 6.90, p¼0.032]. Follow-

up corrected multiple comparisons (Dunn procedure; Elliott & 

Hynan, 2011) revealed that the MI metric was superior to the MSC 
and was able to detect the ASSR in roughly half the trials (Z¼-2.66, 

p¼0.0078; MSC: 850 trials; MI: 400 trials). No difference was 

observed between the F-test and MI (Z¼0.0, p¼1.0), suggesting 

these metrics performed comparably in their efficiency. 

Discussion 

Results of the current study demonstrate potential advantages of a 

novel algorithm for objective identification of scalp-recorded 

auditory steady-state responses (ASSRs) based on the mutual 

information (MI) between neural responses and stimulus spectro-

grams (i.e., time-frequency representations) (Bidelman, 2014). 

Overall, the proposed MI metric achieved robust performance, 

yielding 490% overall accuracy and equally impressive true 

positive and true negative rates of 82% and 100%, respectively. 

Lastly, it was shown that MI increases monotonically with 

increasing number of stimulus presentations (i.e., trials) and can 

detect the ASSR in nearly half the number of trials using the MSC 
and comparable time efficiency as the F-test. Taken together, the 

objectivity and larger generalizability of the proposed MI metric to 

other AEP classes (Bidelman, 2014) make it a useful method for 

ASSR evaluation and as a criterion to terminate signal averaging. 

The current study demonstrates that MI, previously validated for 

human speech-evoked FFR recordings (Bidelman, 2014), is also 

Figure 3. Comparison of the growth in three detection metrics 

during online ASSR recording. Sweep-by-sweep ASSR detection 

based on (A) MSC, (B) F-test, and (C) MI. Dashed lines, 

significance thresholds for response detection [dashed lines; MSC: 

0.483 (p¼0.01) (Dobie & Wilson, 1989); F-test: p¼0.01 (John & 

Picton, 2000); MI: MI 41.45]. 

Figure 4. Comparison of three detection metrics’ stopping rule for 

signal averaging and objectively identifying the presence of ASSRs. 

Stopping criteria were based on a p50.01 (MSC and F-test) and MI 

¼1.45 (MI), respectively. Of the three indices, MI allows detection 

in the fewest number of stimulus sweeps. **p 5 0.01. Error bars ¼ 
±1 s.e.m. 
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applicable to the detection of the ASSR, an evoked potential with 

increasing use in clinical audiology (e.g., Picton et al, 1998; John & 

Picton, 2000; Cone-Wesson et al, 2002; Stroebel et al, 2007; 

Bhagat, 2008; Sturzebecher & Cebulla, 2013) 

The positive, albeit small, bias in the metric (Table 1) indicates it 

had a slight tendency toward false negatives, i.e., true ASSRs being 

erroneously classified as sham responses. However, this bias is 

likely negligible in light of the metric’s relatively low misclassi-

fication rate (9%) and high accuracy (91%). More importantly, 

comparisons with other detection metrics including the F-test and 

MSC revealed largely comparable performance in the MI index. Its 

primary advantage seems to be in time efficiency. Compared to 

MSC, MI was able to detect the ASSR in roughly half the number of 

stimulus sweeps during online averaging. Direct comparisons with 

the F-test, perhaps the most widely used metric for ASSR detection 

(Dobie & Wilson, 1996; John & Picton, 2000), revealed that MI 

performed comparably in time efficiency; both the F-test and MI 

identified the presence of the ASSR in 400 trials (Figure 4) and 

showed similar ROC detection performance (Table 1), overall 

accuracy (MI: 91%, F-test: 95%), but slightly higher misclassifica-

tion error (MI: 9%, F-test: 4.5%). However, signal detection metrics 

indicated higher d-prime for the MI compared to the F-test 
suggesting slightly better discrimination of true ASSR responses 

from noise. 

In our previous report, we also demonstrated the MI metric’s 

superiority over ‘‘gold standard’’ judgments of human observers, 

whose detection is inherently subjective in nature (Bidelman, 2014). 

We have previously shown that the MI metric can be applied to 

other classes of AEPs including the speech-evoked FFRs elicited by 

dynamic, spectrotemporally complex stimuli (Bidelman, 2014). 

Moreover, unlike the F-test and MSC which requires knowledge of 

stimulus frequency content to ‘‘tag’’ the correct response (i.e., 

frequency bin) from the noise floor, MI does not require this a 
priori knowledge or the investigator to specify stimulus and noise 

components. In addition, MI is an information-theoretic measure 

that is ‘‘distribution free’’ and therefore requires fewer assumptions 

than the F-test and MSC, which both utilize parametric (distribu-

tion-based) statistics. Unlike these other metrics, MI can also be 

easily applied to time-varying signals (Bidelman, 2014). Thus, in 

addition to potentially broader application, MI seems to offer a 

useful alternative to other objective detection approaches that 

performs as well or some cases better than current ASSR analysis 

techniques. 

Study limitations and directions for future work 
One application of the ASSR is objective determination of hearing 

thresholds (Johnson & Brown, 2005; Sturzebecher & Cebulla, 

2013). As a first step toward developing a new ASSR detection 

metric, we investigated the efficacy of the MI metric for detecting 

suprathreshold stimuli (70-80 dB SPL). While suprathreshold 

stimuli do find some use clinically in objective auditory applica-

tions, e.g., newborn hearing screenings (American Academy of 

Pediatrics, 2007), they are more commonplace in research appli-

cations, e.g., assessing stimulus-related changes in neural responses 

(e.g., Bidelman et al, 2013) or differences in auditory function 

between populations (e.g., Kraus & Banai, 2007). 

In our previous report examining brainstem FFRs, we showed 

that MI decreases according to a sigmoidal function with decreasing 

SNR (Bidelman, 2014). Hence, it is possible that the criterion MI 

detailed here (MI ¼ 1.45), may not be appropriate for stimuli of 

lower level. It should be noted however, that pure scaling to the 

signal or response will not change the computed MI; based on the 

definition of mutual information (Equation 1), multiplying by a 

constant will not change information content between signals A and 

B. Practically speaking, this means that MI is invariant to changes in 

purely the signal level or response level. MI is however, sensitive to 

the SNR between the signal and response. Hence, lower level stimuli 

(e.g., near threshold) would tend to lower MI given the reduction in 

SNR of the resulting ASSR (i.e., decreased response amplitude but 

constant EEG noise). Presumably, MI would tend to weaken with 

lower stimulus intensities which would then close the gap between 

ASSR and noise floor spectra, making response detection more 

difficult. While we have no reason to believe that the proposed MI 

metric would not increase testing-efficacy for less intense stimuli 

(and therefore noisier AEPs), future studies are needed to validate 

the metric and its generalizability across a wider range of stimulus 

parameters including intensity and different modulation rates. 
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