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Speech perception requires grouping acoustic information into meaningful linguistic-phonetic units 

via categorical perception (CP). Beyond shrinking observers’ perceptual space, CP might aid 

degraded speech perception if categories are more resistant to noise than surface acoustic features. 

Combining audiovisual (AV) cues also enhances speech recognition, particularly in noisy environ-

ments. This study investigated the degree to which visual cues from a talker (i.e., mouth move-

ments) aid speech categorization amidst noise interference by measuring participants’ identification 

of clear and noisy speech (0 dB signal-to-noise ratio) presented in auditory-only or combined AV 

modalities (i.e., A, Aþnoise, AV, AVþnoise conditions). Auditory noise expectedly weakened 

(i.e., shallower identification slopes) and slowed speech categorization. Interestingly, additional 

viseme cues largely counteracted noise-related decrements in performance and stabilized classifica-

tion speeds in both clear and noise conditions suggesting more precise acoustic-phonetic represen-

tations with multisensory information. Results are parsimoniously described under a signal 

detection theory framework and by a reduction (visual cues) and increase (noise) in the precision of 

perceptual object representation, which were not due to lapses of attention or guessing. 

Collectively, findings show that (i) mapping sounds to categories aids speech perception in 

“cocktail party” environments; (ii) visual cues help lattice formation of auditory-phonetic catego-

ries to enhance and refine speech identification. VC 2019 Acoustical Society of America. 
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I. INTRODUCTION 

In everyday life, we effortlessly combine information 

from multiple sensory systems to derive a robust unified per-

cept of events. This ability is essential in the context of 

speech comprehension, whose success requires the many-to-

one mapping of continuously varying acoustic signals onto 

discrete phonetic sound categories (Pisoni, 1973; Harnad, 

1987a; Pisoni and Luce, 1987; Liberman and Mattingly, 

1989). In the context of speech, this type of categorical per-

ception (CP) is indicated when listeners hear gradually 

morphed speech sounds as one of only a few discrete pho-

netic classes, with an abrupt shift in perception near the mid-

point of a stimulus continuum (Liberman et al., 1967; 

Pisoni, 1973; Harnad, 1987b; Pisoni and Luce, 1987; 

Kewley-Port et al., 1988). Given the rapid rate of speech 

transmission (200 words per minute; Miller et al., 1984), 

successful comprehension demands that observers process 

the incoming acoustic signal with maximal efficiency. CP 

facilitates speech perception by grouping unimportant differ-

ences within categories and boosting discriminability 

between categories, thereby providing the listener a more 

constrained, manageable perceptual space. Presumably, this 

“downsampling” process of CP also generates needed per-

ceptual constancy in the face of individual variation along 

multiple acoustic dimensions (e.g., talker variability) 

(Prather et al., 2009) or, as tested here, signal degradation 

(e.g., perceiving speech in noise). 

CP also manifests in the visual domain, including the 

perception of faces (Beale and Keil, 1995), colors (Franklin 

et al., 2008), and visual speech (O’Sullivan et al., 2017). 

While there is a substantial literature on CP for single-cue 

(auditory or visual) contexts, less is known about its role in 

multisensory conditions such as audiovisual (AV) contexts. 

Multi-cue integration is necessary in face-to-face communi-

cation in which visual articulatory information from a talk-

er’s face provides a critical complement to what was said. In 

these AV contexts, dynamic speech features in auditory and 

visual channels reflect discrete representations of phonetic-

linguistic units (phonemes) and corresponding representa-

tions of mouth shapes (visemes) (Peelle and Sommers, 

2015). Such integration creates a “visual gain” compared to 

auditory-only speech, especially when the acoustic signal is 

degraded (Sumby and Pollack, 1954; MacLeod and 

Summerfield, 1987; Vatikiotis-Bateson et al., 1998; Ross 

et al., 2007, Golumbic et al., 2013; Xie et al., 2014). 

Visual cues aid comprehension of speech in several 

ways. Synchronous visible mouth movements can guide 

comprehension by providing cues to both the timing and 

content of the acoustic signal (Peelle and Sommers, 2015). 

Spatial cues such as mouth shape help disambiguate less 
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salient speech sounds, while dynamic articulatory cues help 

predict upcoming elements in the speech stream (Peelle and 

Davis, 2012) and allocate attention to target sounds (Carlyon 

et al., 2001). To varying degrees, facial kinematics and 

acoustic envelopes are correlated and this cross-modality 

comodulation can enhance target speech information and 

improve segregation amidst competing signals (Grant and 

Bernstein, 2019). In addition, lipreading and coherent visual 

cues enhance the mere detection of speech in noise (Grant 

and Seitz, 2000; Grant, 2001; Bernstein et al., 2004; 

Schwartz et al., 2004). 

Sentence-level recognition depends on a variety of cues 

such as semantic context, lexical frequency, and other index-

ical cues that can aid speech perception, especially in noise 

(e.g., Boothroyd and Nittrouer, 1988; Helfer and Freyman, 

2009). Moreover, prominent theories of multisensory facili-

tation typically explain AV speech benefits as an increase in 

redundancy (e.g., RACE models; Miller and Ulrich, 2003; 

Colonius and Diederich, 2006) or decrease in cognitive 

demand (Peelle and Sommers, 2015) offered by combining 

information from multiple modalities. We explore here an 

alternate, perhaps more fundamental mechanism to account 

for AV speech benefits that would not depend on such high-

level context, lexical, or cognitive effects. Namely, that 

vision might alter the underlying categorical (acoustic-pho-
netic) representations of speech. 

Our scientific premise was based on the notion (hereto-

fore untested) that visual cues might “sharpen” the percep-

tual (category) units of speech itself rather than modulating 

listening effort or signal information/redundancy, per se. 
Supporting this hypothesis, visual cues have been shown to 

influence (alter) speech percepts even when the auditory sig-

nal is perfectly clear (McGurk and MacDonald, 1976). Such 

effects suggest that visual cues shape speech categories and 

that informational content of the visual signal systematically 

influences the perceptual identity of speech objects them-

selves (Massaro and Cohen, 1983; van Wassenhove et al., 
2005). Green and Kuhl (1989) theorized that visual and audi-

tory cues of speech contribute complementary phonetic 

information about place and manner of articulation. They 

compared participants’ CP of a nonvisible voicing feature of 

auditory stimuli presented in AV and auditory-only condi-

tions and found that AV items yielded perception of a longer 

voicing boundary relative to the auditory-only speech, sug-

gesting that AV cues for speech are processed together as a 

global percept. 

Presumably, the inherent process of categorizing can be 

further beneficial to speech perception in degraded (noisy) 

listening conditions. Phonetic categories (a higher-level 

code) are thought to be more robust to noise than physical 

surface features of a stimulus (lower-level sensory code) 

(Gifford et al., 2014; Helie, 2017; Bidelman et al., 2019). 

That is, the construction of a perceptual object and natural 

filtering process of CP might enable category members to 

“pop out” among a noisy feature space (e.g., Nothdurft, 

1991; Perez-Gay et al., 2018; Bidelman et al., 2019). Thus, 

from a theoretical perspective, the mere process of grouping 

speech sounds into categories may aid perception of speech 

in noise. While the benefits of visual cues on degraded 

speech recognition are well documented (Sumby and 

Pollack, 1954; MacLeod and Summerfield, 1987; Vatikiotis-

Bateson et al., 1998; Ross et al., 2007; Xie et al., 2014), we 

are unaware of any studies directly assessing how the opera-

tion of speech categorization itself—a fundamental mode of 

perception—is influenced by visual cues of a talker (e.g., 

phoneme-viseme interactions), particularly as a function of 

sensory uncertainty (e.g., noise) (cf. Bejjanki et al., 2011). 

This is surprising given the robust CP observed in the visual 

domain, including perception of faces (Beale and Keil, 

1995) and colors (Franklin et al., 2008). Thus, a novel aspect 

of the current study is to characterize the extent to which 

visual information (and noise) interact during the core 

process of categorization (i.e., the acoustic-phonetic 

conversion). 

Additionally, a large portion of speech research on AV 

integration examines “conflict situations” that involve test-

ing performance for incongruent speech cues in the auditory 

and visual modalities, as in McGurk experiments (McGurk 

and MacDonald, 1976). Such paradigms can produce inter-

sensory biasing, in which listeners develop a propensity to 

categorize speech based on cues from the other modality 

(Walden et al., 1990; Bertelson et al., 2003). Indeed, studies 

have shown that normal listeners categorizing incongruent 

AV speech rely more on auditory cues whereas cochlear 

implant users rely more on visual cues (see also Schorr 

et al., 2005; Desai et al., 2008). Thus, it is difficult to draw 

conclusions about AV benefits from studies employing such 

conflict situations that require congruency resolution. 

In the present study, we tested the hypothesis that visual 

cues aid speech perception by sharpening categorical repre-

sentations for speech, particularly under noise-degraded lis-

tening conditions. We measured participants’ behavioral 

categorization as they identified speech stimuli along an 

acoustic-phonetic /da/ to /ga/ continuum presented in clear 

or noise-degraded listening conditions. This paradigm is par-

ticularly advantageous for assessing multisensory processing 

because stimulus features change orthogonal to the behav-

ioral percept (Bidelman et al., 2013), and therefore might be 

more veridical for studying perceptual “binding” vs mere 

“integration” in speech perception (for review, see Bizley 

et al., 2016). To assess acoustic-visual interactions in CP, 

continua were also presented with or without visual cues 

(i.e., visemes) of the talker. We predicted that mouth move-

ments accompanying the auditory input should further warp 

(bias) participants’ auditory perceptual space to one or the 

other end of the speech continuum. Comparing the slopes of 

listeners’ psychometric functions across conditions assessed 

the degree to which noise and visual cues influenced the 

strength/precision of CP. Previous studies have shown disso-

ciations in the accuracy (%) and speed (i.e., response times, 

RTs) of listeners’ categorization (Binder et al., 2004). These 

dual properties of behavior might also be supported by dif-

ferent brain regions (e.g., %-correct: auditory cortex; RTs: 

inferior frontal cortex; Binder et al., 2004; Chang et al., 
2010; Bidelman and Lee, 2015), suggesting categorization 

can be parsed into sensory-perceptual and decision processes 

(cf. “early- vs late-stage” or “pre- vs post-labelling” models 

of AV integration; Braida, 1991; Peelle and Sommers, 
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2015). Thus, we measured both the accuracy and speed of 

listeners’ speech categorization to assess visual and noise-

related modulations in behavior and to tease apart these fac-

tors in relation to CP. We hypothesized that noise would 

weaken the categorical representations of speech but that 

visual cues would partially counteract noise-related decre-

ments in CP. While some work suggests visually presented 

syllables (visemes) are categorically perceived (Weinholtz 

and Dias, 2016), visual contributions are limited under nor-

mal circumstances. Thus, we predicted visual phonetic cues 

might become more effective for ambiguous or degraded 

speech classification (Massaro and Cohen, 1983). 

II. METHOD 

A. Participants 

Fifteen young adults were recruited to the experiment. 

One participant’s data were lost due to a technical error in 

data logging. Thus, the final sample consisted of fourteen 

participants [six males, eight females; age: mean ¼ 26.9, 

standard deviation ¼ 3.0 years]. All exhibited normal hear-

ing sensitivity [i.e., <25 dB hearing level (HL) thresholds, 

audiometric frequencies]. Each was strongly right-handed 

(82.4 6 17.3% laterality index; Oldfield, 1971), had obtained 

a collegiate level of education, and had normal or corrected-

to-normal vision. Musical training is known to modulate cat-

egorical processing and speech-in-noise listening abilities 

(Parbery-Clark et al., 2009; Bidelman et al., 2014; Smayda 

et al., 2015; Mankel and Bidelman, 2018). Consequently, we 

required that participants have minimal music training 

throughout their lifetime (1.9 6 2.9 years). All received pay-

ment for their time and gave written informed consent in 

compliance with a protocol approved by the University of 

Memphis Institutional Review Board. 

B. Stimuli: AV speech continua 

We used a 7-step, stop-consonant /da/ to /ga/ sound con-

tinuum (varying in place of articulation) to assess CP for 

speech [Fig. 1(A)]. Each sound token (Tk) was separated by 

equidistant steps acoustically yet was perceived categori-

cally from /da/ to /ga/. Stimulus morphing was achieved by 

altering the F2 formant region in a stepwise fashion using 

the STRAIGHT software package (Kawahara et al., 2008). 

We chose a consonant-vowel (CV) continuum because com-

pared to other speech sounds (e.g., vowels), CVs are per-

ceived more categorically (Pisoni, 1973; Altmann et al., 
2014) and carry more salient articulatory gestures and visual 

cues for perception (Moradi et al., 2017). Original video 

material consisted of a single talker (Talker #6) from the 

“congruent” set of AV CVs described in Nath and 

Beauchamp (2012) and Mallick et al. (2015).1 The total 

length of each video clip ranged from 1.5 to 2.0 s to start and 

end each speaker in a neutral, mouth-closed position. The 

acoustic portion of each video (350 ms corresponding to 

where the talker was opening/closing her mouth) came from 

the same talker in the video and was temporally centered 

within each clip. 

Though it would have been a desirable, creating a 

morphed video channel from /da/ to /ga/ is technically chal-

lenging given the time-varying nature of images on the 

screen and integration of the sound channel. Therefore, to 

investigate if phonetic visual cues (visemes2) enhance the 

salience of speech CP, we superimposed the morphed acous-

tic continuum (each of the seven steps) on a prototypical 

“da” or “ga” video production. For the AV conditions, this 

resulted in an overlay of audio tokens 1–3 onto the “da” 

video and tokens 4–7 onto the “ga” video [Fig. 1(A)]. Thus, 

each half of the acoustic-phonetic /da/-/ga/continuum was 

latticed with either “da” (Tk 1–3) or “ga” (Tk 4–7) visual 

cues.3 That is, we intended to further warp participants’ 

auditory perceptual space to one or the other end of the 

FIG. 1. (Color online) Stimuli and task design. (A) Spectrogram of the /da/-/ga/ continuum. Each of the seven acoustic tokens of the morphed speech contin-

uum was overlaid onto a video of either a prototypical /da/ (Tk 1–3) or /ga/ (Tk 4–7) (Nath and Beauchamp, 2012; Mallick et al., 2015). We intended to further 

warp (bias) participants’ auditory perceptual space to one or the other end of the speech continuum with visual cues of the talker. (B) Single trial time course. 

After a brief orienting screen (þ), participants rapidly identified whether they perceived each audio(visual) token as a “da” or “ga” via computer keypress. 

Speech stimuli were presented in four different blocks which varied in the number of sensory cues from the talker and the presence/absence of acoustic noise 

interference: A, Aþnoise, AV, AVþnoise. 
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continuum via biasing visual cues of the talker. Mixing of 

the auditory and visual channels was achieved using 

FFmpeg software and custom routines coded in MATLAB 

2013 b (The MathWorks, Inc.). 

In addition to these AV conditions, we examined partic-

ipants’ speech categorization for identical tokens where the 

video channel was absent from the screen [i.e., auditory-only 

(A) condition]. To further investigate the impact of visual 

cues on speech categorization, we also constructed a similar 

AV continuum by partially masking the sound channel with 

multi-talker babble noise [signal-to-noise ratio (SNR) 

¼ 0 dB SNR] (Killion et al., 2004). This SNR was chosen on 

the basis of previous studies showing behavioral perfor-

mance is most dynamic under challenging (0 dB or negative) 

SNRs (e.g., Sumby and Pollack, 1954; Xie et al., 2014; 

Reetzke et al., 2016). 

In total, the stimulus set consisted of four /da/-/ga/ 

continua that varied in AV cues and noise degradation to 

the sound channel: A, Aþnoise, AV, AVþnoise. N ¼ 5 of  

the participants also took part in a V-only condition where 

the speech continuum was presented with a muted sound 

channel. This pilot control allowed us to assess whether par-

ticipants could categorize speech sounds based solely on 

visual cues of the talker. While listeners could identify V-

only speech above chance, performance was highly variable. 

Given that V-only speech did not produce consistent/reliable 

identification and previous findings that visual speech offers 

impoverished phonetic detail in isolation (Walden et al., 
1977; Kuhl and Meltzoff, 1988; Bernstein and Liebenthal, 

2014), we did not consider this condition further. 

C. Task procedure 

Participants sat in a double-walled sound attenuating 

chamber (Industrial Acoustics, Inc.) 90 cm from a com-

puter monitor. Where necessary, participants wore corrective 

lenses/contacts for the experiment. All confirmed the screen 

and visual stimuli were clearly visible before initiating the 

experiment. MATLAB was used as a driving engine to present 

AV stimuli via the VLC media player as well as collect 

response data. Stimuli appeared at the center of the screen 

on a black background, subtending a 7.0 visual angle 

(Samsung SyncMaster S24B350HL; nominal 75 Hz refresh 

rate). High-fidelity circumaural headphones (Sennheiser HD 

280 Pro) delivered the auditory channel binaurally at a com-

fortable level [80 dB sound pressure level (SPL)]. 

Participants heard 210 trials of each individual CV (30/ 

token) presented in the different AV stimulus conditions 

(four separate blocks). Blocking was used to minimize add-

ing unnecessary cognitive effort or distractibility to the task 

that would have occurred from trial-to-trial switching 

between modalities. Block order was counterbalanced across 

participants according to a Latin square sequence (Bradley, 

1958). On each trial, participants labeled the perceived 

speech token with a binary response via the computer key-

board (“da” or “ga”). They were encouraged to respond as 

quickly and accurately as possible. Both percent identifica-

tion and response times (RTs) were logged. Breaks were 

allowed between blocks to avoid fatigue. 

D. Data analyses 

For each stimulus condition, we measured the steepness 

of participants’ psychometric function as the slope of each 

curve where it straddled the CP boundary (i.e., slope 

¼ [PCTk3 – PCTk5]/2, where PCn is the identification score at 

token n). Larger slopes reflect steeper psychometric func-

tions and hence, stronger CP (Xu et al., 2006; Bidelman and 

Lee, 2015; Bidelman and Walker, 2017).We measured the 

location of the CP boundary as the point (token number) 

along the continuum where the psychometric functions 

crossed, measured via the MATLAB function InterX.4 

Comparing these metrics between AV and noise conditions 

assessed possible differences in the location and “steepness” 

(i.e., rate of change) of the perceptual boundary as a function 

of AV context and noise interference. 

Behavioral RTs for speech labeling speeds were com-

puted as participants’ median response latency across trials 

for a given condition. We excluded outliers (RTs outside 

250–6000 ms) from further analysis since these reflect fast 

guesses and lapses of attention (e.g., Bidelman and Walker, 

2017). 

Psychometric slopes were analyzed using a mixed-

model analysis of variance (ANOVA) (subject ¼ random 

factor) with fixed effects of SNR (two levels: clean, noise) 

and modality (two levels: audio, audiovisual) (PROC 

GLIMMIX, SAS
VR 

9.4).  RT  data  were  analyzed with fixed effects  

SNR, modality, and token (seven levels: Tk 1–7). False discov-

ery rate (FDR) was used to adjust for multiple comparisons 

(Benjamini and Hochberg, 1995). Effects sizes are reported as 

partial-eta squares (g2
p) and mean differences for omnibus 

ANOVAs and post hoc contrasts, respectively. 

III. RESULTS 

A. Psychometric identification functions 

Figure 2 shows psychometric identification functions for 

the different AV conditions. An ANOVA revealed a signifi-

cant SNR  modality interaction on psychometric slopes 

[F1, 39 ¼ 7.50, p ¼ 0.0092; g2
p ¼ 0.16]. FDR-corrected paired 

contrasts revealed that noise weakened CP for auditory stim-

uli (A vs Aþnoise: t13 ¼ 4.78, p ¼ 0.00145; mean difference 

¼ 19.7%) [Fig. 2(B)]. AV speech was also perceived more 

categorically than A speech [t13 ¼ 2.51, p ¼ 0.035; mean dif-

ference ¼ 5.2%], suggesting that multisensory cues enhance 

CP. The AV and AVþnoise did not differ [t13 ¼ 1.44, 

p ¼ 0.17; mean difference ¼ 4.7%], implying that CP is 

robust for multisensory speech even in the presence of noise. 

Lastly, psychometric slopes were sharper for the AVþnoise 

compared to the Aþnoise condition [t13 ¼ 4.17, p ¼ 0.0011; 

mean difference ¼ 20.1%], suggesting that the addition of 

visual cues helped counteract the negative effects of noise 

on auditory speech categorization. 

Figure 3 shows an alternate presentation of these data, 

plotting each participant’s psychometric slope for one condi-

tion vs another for the four major stimulus contrasts of inter-

est. This visualization highlights the relative improvement or 

decrement in CP with added visual cues and noise, respec-

tively. Points in the upper left half of each plot (above the 
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diagonal) show an improvement in categorization for the 

ordinate relative to the abscissa condition. We found that a 

majority of participants showed stronger CP when categoriz-

ing clean compared to noisy speech (panel A), again con-

firming that noise weakened phonetic representations of 

speech. Similarly, stronger CP (steeper identification func-

tions) for AV compared to A speech (panel B) confirms that 

visual cues helped strengthen phonetic categories. Last, 

visual cues enhanced categorization for degraded speech 

compared to the degraded auditory channel alone (panel D). 

While the location of the perceptual boundary was 

largely centered across conditions [Fig. 2(C)], it did shift 

depending on both noise and multisensory cues [SNR 

 modality interaction: F1, 39 ¼ 4.87, p ¼ 0.033 ; g2
p ¼ 0.11]. 

In particular, clean AV speech produced a leftward shift in 

identification curves (cross-over ¼ 3.5; t-test against percep-

tual boundary at Tk 4; t13 ¼2.43, p ¼ 0.029), indicating a 

small but measurable bias toward producing more frequent 

“ga” responses across a wider range of the continuum. 

However, this might be expected given that “ga” visemes 

were more prevalent across the auditory perceptual contin-

uum than “da” videos. Contrastively, Aþnoise yielded a 

rightward shift in the psychometric function (cross-over loca-

tion ¼ 4.7; t13 ¼ 2.50, p ¼ 0.026) suggesting a bias to more 

frequently respond “da” in noisy listening conditions. We 

note that this noise-related effect occurred even though 

“ga” videos were overall more prevalent across continua [see 

Fig. 1(A)]. This latter bias effect may reflect top-down influ-

ences of lexical knowledge because /da/ has a higher fre-

quency of occurrence than /ga/ in spoken language (Denes, 

1963). All other stimulus conditions produced symmetric 

psychometric functions (ps > 0.09). 

B. RTs 

Behavioral RTs, reflecting the speed of participants’ cat-

egorization, are shown in Fig. 4. RTs are plotted relative to 

the average RT across all conditions to highlight differential 

changes in categorization speed with noise and visual cues. 

RTs showed main effects of noise [F1,351 ¼ 137.96, p < 0.0001; 

g2
p ¼ 0.28] and modality [F1,351 ¼ 5.55, p ¼ 0.019; g2

p ¼ 0.016]. 

On average, RTs were faster when classifying clean compared to 

noise-degraded speech (A vs Aþnoise: p < 0.0001; mean differ-

ence ¼ 318 ms). Similarly, clean AV speech elicited faster RTs 

than degraded AV speech (AV vs AV þ noise: p < 0.0001; 

mean difference ¼ 403 ms). Participants were equally fast at 

categorizing clear A and AV speech (p ¼ 0.49; mean difference 

¼ 30 ms). However, in noise, they were faster at classifying 

Aþnoise vs AVþnoise speech (p ¼ 0.0086; mean diff. 

¼ 114 ms). While these findings reveal a prominent effect of 

noise on the speed of categorical processing, the relative pat-

tern of RTs is often more meaningful: CP is characterized by 

a slowing in response speed near the ambiguous midpoint of 

FIG. 3. (Color online) Multisensory cues enhance the CP of clear and especially noise-degraded speech. Individual points show each participant’s psychomet-

ric slope for two different stimulus continua plotted against one another. Errorbars (61 s.e.m.) show variance around the group average centroid. Points in the 

upper left half of each plot (above the diagonal) show an improvement in CP for that ordinate relative to the abscissa condition. A majority of participants 

show stronger CP when categorizing (A) clean compared to noisy speech sounds, (B) AV compared to A speech, and (D) AVþnoise compared to Aþnoise 

speech. (C) AV and AVþnoise speech yeild similar slopes. 

FIG. 2. (Color online) Perceptual identification for AV speech with and without noise interference. (A) Psychometric functions show an abrupt shift in percep-

tion when classifying speech indicative of discrete perception (i.e., CP). Degree of categorization varies depending on the sensory modality and quality of cues 

that are available. Note the two curves within each panel are mirror images since the categorization task is a binary decision. (B) Psychometric function slopes. 

Sharper identification curves are observed for clean A and AV speech. Acoustic noise weakens CP for speech (A vs Aþnoise), but this decrement is counter-

acted by the aid of visual cues of the talker (AV vs AVþnoise). (C) Location (cross-over) of the CP boundary. Participants show slight bias to respond “ga” in 

the Aþnoise condition but otherwise location varies little across stimulus conditions. Shading and error bars ¼ 61 standard error of the mean (s.e.m.). 
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the continuum (Pisoni and Tash, 1974; Bidelman et al., 
2013; Bidelman et al., 2014; Bidelman and Walker, 2017; 

Reetzke et al., 2018). To assess this effect, we conducted a 
priori contrasts of RTs on the perceptual boundary (Tk 4) vs 

others along the continuum [mean (Tk 1,2,3,5,6,7)]. This 

confirmed CP for A speech [t13 ¼2.51, p ¼ 0.026; mean 

diff. (Tk123567 vs Tk4) ¼ 81.5 ms]. RTs to AV speech simi-

larly showed the categorical (inverted-V) pattern [t13 

¼3.16, p ¼ 0.0075; mean difference ¼ 81.3 ms]. A cate-

gorical RT effect was not observed for Aþnoise [t13 ¼ 0.45, 

p ¼ 0.66] nor AVþnoise [t13 ¼0.42, p ¼ 0.68; mean diff. 

¼ 12.3 ms], further suggesting that noise weakened categori-

cal decisions in these degraded stimulus conditions. 

Even in the absence of significant differences in central 

tendency, RTs can differ in terms of intrasubject variability 

(Bernstein et al., 2014; Bidelman et al., 2017). Reduced RT 

variability in certain conditions might also reflect improved 

cognitive processing (cf. Strauss et al., 2002). Visual inspec-

tion of RT variance suggested more restricted, less variable 

response speeds for multisensory AV stimuli (cf. error bars 

for A vs AV). Pooling across tokens, formal tests of equal 

variance (two-sample F-test) revealed that RT dispersion 

was indeed smaller when categorizing AV compared to the 

A speech for both the clean [F13,13 ¼ 7.72, p ¼ 0.0008] and 

noise-degraded [F13,13 ¼ 10.46, p ¼ 0.0002] conditions. 

C. Signal detection theory (SDT) modeling 

To better understand multisensory and noise effects on 

CP [Fig. 2(A)], we modeled our empirical data using SDT 

(e.g., Rozsypal et al., 1985; Braida, 1991; Getz et al., 2017) 

[Fig. 5(A)]. We estimated different properties of each partic-

ipant’s psychometric functions using Bayesian inference via 

the psignifit toolbox (Sch€utt et al., 2016). This allowed us to 

measure individual lapse (k) and guess (c) rates from their 

identification data. Lapse rate (k) is computed as the differ-

ence between the upper asymptote of the psychometric func-

tion and 100% and reflects the probability of an “incorrect” 

response at infinitely high stimulus levels [i.e., responding 

“da” for Tk 7; see Fig. 2(A)]. Guess rate (c) is defined as the 

difference between the lower asymptote and 0% and reflects 

the probability of a “correct” response at infinitely low stim-

ulus levels [i.e., responding “ga” for Tk 1; see Fig. 2(A)]. 

For an ideal observer k ¼ 0 and c ¼ 0. k and c were mea-

sured from each participant’s individual psychometric func-

tion per AV stimulus condition [see Fig. 5(A)].5 

An ANOVA revealed that lapse rates depended on stim-

ulus condition [F3,39 ¼ 5.42, p ¼ 0.0032; g2
p ¼ 0.29] [Fig. 

5(B)]. However, this effect was solely attributable to more 

lapses in the AVþnoise compared to Aþnoise condition 

(p ¼ 0.0016), paralleling the RT effect between these condi-

tions (Fig. 4). No other pairwise comparisons differed in 

FIG. 4. (Color online) Speech classification speeds [response times (RTs)] 

vary with sensory modality and clarity of the speech signal. RTs are plotted 

relative to the mean RT across conditions (dotted line) to highlight the differ-

ential in speed of categorization judgments with noise and visual cues. Clean 

A and AV speech produce the fastest labeling speeds. Participants are 

200–300 ms slower at categorizing A and AV speech amidst noise. Only clear 

A and AV speech produce a categorical pattern of RTs (*p < 0.05) where 

ambiguous speech tokens elicit slower decisions than tokens with clear pho-

netic categories [i.e., contrast: Tk 4 vs mean (Tk 1,2,3,5,6,7)] (Pisoni and 

Tash, 1974; Bidelman and Walker, 2017). errorbars ¼ 61 s.e.m. 

FIG. 5. (Color online) Signal detection model of AV and noise effects in speech CP. (A) Schematic identification curves illustrating definitions of lapse and 

guess rates from the psychometric function. (B) Lapse and (C) guess rates during CP across stimulus conditions. (D) SDT framework for understanding noise 

and AV effects in CP. (left) Observers’ responses are modeled along a perceptual decision axis. In a binary classification task, the probability of responding 

one or another stimulus class (i.e., /da/ or /ga/) is modeled as two Gaussians. lda and lga represent the means of the /da/ and /ga/ distributions; r is their widths, 

reflecting response variability. An observer responds “ga” if the signal “energy” falls above the decision criterion (dotted line) and “da” below. (right) 
Integrating either probability curve results in a cumulative density function, modeling observers’ psychometric functions. In an SDT framework, changes in 

the slope of observers’ psychometric functions with multisensory cues and noise [Fig. 2(A)] are well modeled as changes in response variance r2. Reduced 

height of the psychometric function in the AVþnoise condition can be attributed to lapses of attention (see panel B, “AVþnoise”), which prevent full unity at 

the asymptotic end of the curve (Sch€utt et al., 2016). errorbars ¼6 1 s.e.m., **p < 0.01. 
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lapse rate (ps > 0.09–1.0). Similarly, guess rates were 

invariant across stimuli [F3,39 ¼ 1.85, p ¼ 0.154; g2
p ¼ 0.12] 

[Fig. 5(C)]. Given that lapse and guess rate parameters were 

stable across stimuli, these data indicate that while visual 

cues and noise modulated the degree of CP for speech (Fig. 

2), those effects were not driven by obvious differences in 

lapses of attention or guessing, per se (Shen and Richards, 

2012; Sch€utt et al., 2016). 

In an SDT framework, observers’ responses can be 

modeled along a perceptual decision axis where the proba-

bility of responding one or another stimulus class (“da” or 

“ga”) follows Gaussian normal distributions of the form 

y ¼ eðxlÞ2 =2r2 

, where lda and lga represent the means of 

the /da/ and /ga/ normal curves and r, their width, reflecting 

variance due to the probabilistic nature of decision. An 

observer responds “ga” if the signal energy falls above the 

decision criterion (dotted line) and “da” below. The degree of 

categorization can then be expressed in terms of sensitivity, 

d0 ¼ (lda – lga)/r (Geschneider, 1997; p. 118). Theoretically, 

d0 represents the strength of perceptual difference between 

/da/ and /ga/ classes. If we assume that the distance between 

internal representations (lda, lga) for each phonetic class are 

fixed (e.g., because CV phonemes are overlearned sounds), 

more or less precise classification across conditions must 

result from changes in response variance r2 . Integrating the 

Gaussian functions results in a cumulative density func-

tion, mirroring observers’ psychometric functions (Fig. 5, 

right). Our empirical findings across AV conditions [Fig. 

2(A)] are well-modeled as changes in response variance 

r2 . We attribute this reduction in r2 as a sharpening of 

speech categories. 

IV. DISCUSSION 

A key aspect of speech comprehension is the ability to 

categorize variable acoustic input into discrete phonetic 

units. How different sensory modalities influence and poten-

tially enhance this ability is important for understanding 

human speech comprehension. By measuring participants’ 

CP for speech, we were able to assess whether the availabil-

ity of additional sensory cues and the quality of the auditory 

signal influenced the degree of categorical speech process-

ing. A primary finding was that noise and visual cues exerted 

opposite effects on CP, with noise eliciting weaker CP and 

visual cues eliciting stronger CP. Thus, noise appears to blur 

categorization whereas visual cues help compensate for the 

compromised auditory modality. Our results support the 

notion that observers integrate information from multiple 

sensory domains to categorize signals, especially those 

which lack sensory precision as in the case of noise degrada-

tion (Helie, 2017; Bidelman et al., 2019). Additionally, we 

extend previous findings demonstrating that visual cues 

enhance speech comprehension in noise (Sumby and 

Pollack, 1954; MacLeod and Summerfield, 1987; Vatikiotis-

Bateson et al., 1998; Ross et al., 2007; Golumbic et al., 
2013; Xie et al., 2014) by showing these multisensory bene-

fits extend to the level of individual/isolated phonetic speech 

units and the fundamental process of CP (cf. Massaro and 

Cohen, 1983). 

We found participants exhibited weaker CP for noisy 

relative to clear speech, as evidenced by flatter identification 

curves and slower RTs. While clear AV and A speech 

slowed responses to more ambiguous syllables near the mid-

point of the continuum, this hallmark of CP was not elicited 

for the two degraded continua, implying weaker categorical 

processing in those latter conditions. We also found an 

enhancement in CP for AV compared to A speech [e.g., Fig. 

3(B)]. This suggests visual cues helped lattice internalized 

acoustic-phonetic representations, allowing the formation of 

more well-formed (sharper) speech categories. Moreover, 

while the overall speed of access to phonetic labels (i.e., 

average RTs) was similar with (AV) and without (A) viseme 

information of the talker, visual cues reduced the overall 

variability in participants’ response speeds for both clean 

and noise-degraded speech (Fig. 4). This reduction in deci-

sion variance is consistent with the idea that multisensory 

cues provide more precise access to speech categories post 

perceptually. 

Overall, we found that AV benefits in CP were more 

prominent for perceptual identification (%) compared to RT 

data. This suggests a differential effect of multisensory cues 

on “early vs late” (Peelle and Sommers, 2015) or “pre- vs 

post-labeling” (Braida, 1991) stages of categorization. 

Similar dissociations in behavioral identification and 

response timing have been noted in previous neuroimaging 

studies examining speeded speech labeling tasks (Binder 

et al., 2004). For example, in conditions with highly experi-

enced listeners (Bidelman and Lee, 2015) or overlearned 

stimuli (Binder et al., 2004; Chang et al., 2010), early audi-

tory cortex is sufficient to generate discrete neural represen-

tations that code discrete acoustic-phonetic categories. 

However, the decision process, as indexed by the speed of 

listeners’ categorical judgments (i.e., RTs) are largely deter-

mined by activation in inferior frontal brain regions (Binder 

et al., 2004). Other animal (Bizley and Cohen, 2013) and 

human studies (Bidelman and Howell, 2016; Bidelman 

et al., 2018) have shown that functional interplay between 

frontal and superior temporal areas is necessary for robust 

speech recognition and neural coding within this network 

varies with signal clarity (SNR), intelligibility, and linguistic 

experience (Adank et al., 2012; Scott and McGettigan, 2013; 

Bidelman and Dexter, 2015; Bidelman and Howell, 2016; 

Alain et al., 2018; Bidelman et al., 2018). While the purely 

behavioral nature of our data cannot adjudicate brain mecha-

nisms, future neuroimaging experiments could address the 

neural underpinnings, temporal dynamics, and multisensory 

benefits in CP. 

Noise manipulations revealed that acoustic interference 

weakened speech identification to the point where partici-

pants heard continua in a near continuous rather than cate-

gorical manner. This suggests a robust (perhaps expected) 

effect of signal clarity on the formation of categorical per-

cepts; noise in the sensory input blurs acoustic-phonetic 

mapping inhibiting a strong match between the external sig-

nals and internalized memory templates. Nevertheless, while 

noise compromised categorical representations for speech, 

we found that visual cues counteract these behavioral disad-

vantages (at least for the moderate SNR tested here). 
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Interestingly, we find that the influence of visemes on audi-

tory categorical processing is also larger when the speech 

signal is degraded. That is, the benefits of AV integration on 

CP appear stronger for degraded relative to clear speech [cf. 

Figs. 3(D) vs 3(B)]. Thus, in addition to providing useful 

groupings and perceptual constancy of sensory space 

(Prather et al., 2009), our findings reveal another important 

benefit of CP: building phonetic categories (a higher-level 

discrete code) is more robust to noise than the physical sur-

face features of a stimulus (lower-level sensory code) (cf. 

Gifford et al., 2014; Helie, 2017; Bidelman et al., 2019). 

Consequently, our data imply that the mere process of group-

ing speech sounds into categories seems to aid speech com-

prehension in adverse listening conditions. Future studies 

should test whether AV effects on CP observed here for CVs 

also applies more broadly to CP for other speech (and non-

speech) stimuli (e.g., vowels which carry more obvious 

visual cues). 

Our empirical multisensory and noise effects on CP are 

parsimoniously described via concepts of SDT (e.g., 

Rozsypal et al., 1985; Braida, 1991; Getz et al., 2017). 

Under an SDT framework, changes to internal response vari-

ability of the observer account for the flattening of the psy-

chometric function with additive noise (Aþnoise) and 

conversely, (re-) sharpening with visual cues (AV speech): 

external noise increases r, leading to wider spread identifica-

tion curves whereas visual cues reduce r and steepen the 

psychometric function (see also Gifford et al., 2014). The 

subtle reduction in height of the psychometric function in 

AVþnoise (see Fig. 2) can be attributed to attentional lapses 

in this condition [see Fig. 5(B)], which prevent full unity at 

the asymptotic end of the identification curve (Shen and 

Richards, 2012; Sch€utt et al., 2016). Although accuracy and 

decision speed (RT) are dissociable in categorization tasks 

(Binder et al., 2004), our RT data further support these 

notions. Delayed response speeds in the AVþnoise condition 

also suggest attentional lapses, at least in that condition [cf. 

Figs. 4 and 5(B)]. Indeed, RTs were correlated with atten-

tional lapses but only for AVþnoise speech (r ¼ 0.71, 

p ¼ 0.0043). Still, the fact that lapse effects were only lim-

ited to the difficult AVþnoise condition—requiring parsing 

of speech from noise and the integration of phoneme and 

viseme information—suggests effects in the other conditions 

are probably not attributable to attention or post-labeling 

decision stages, per se (cf. Braida, 1991), but a sharpening 

(de-sharpening) of internalized categories. While SDT does 

not explicitly account for the speed of an observer’s decision 

(only % identification/accuracy), the reduction in RT vari-

ability with visual cues (and increased variability with noise 

absent any V cues) suggests that these stimulus factors mod-

ulate observers’ response variability (r) during CP in oppo-

site directions—a reflection of changes in the precision of 

the underlying perceptual object(s). 

We interpret multisensory effects on CP to reflect a 

sharpening of internalized speech categories, consistent with 

notions that auditory and visual components of speech are 

fused into a single global percept (Green and Kuhl, 1989). 

Still, an alternate interpretation of our data relates to a reduc-

tion in stimulus uncertainty (Gifford et al., 2014); visual 

cues add another source of information that might reduce 

uncertainty in making categorical judgments. Similarly, 

vision might provide an added “gain” of sensory information 

relative to A-only speech (Sumby and Pollack, 1954; 

MacLeod and Summerfield, 1987; Vatikiotis-Bateson et al., 
1998; Ross et al., 2007; Xie et al., 2014). Under this inter-

pretation, the observed sharpening of the CP boundary (Fig. 

2) might be explained by a reduction in uncertainty due to 

AV facilitation. 

In this vein, comparing AV to AVþnoise responses for 

Tk 4 revealed that classification was more reliably “ga” in 

the presence of noise. This implies a Bayesian-like integra-

tion (Deneve and Pouget, 2004). When noise is absent, A 

cues still dominate the behavioral decision. However, when 

noise is added, the reliability of A cues is severely dimin-

ished and so V cues take over as they offer more reliable 

inference on which to form AV speech percepts (Bidelman 

et al., in press). Indeed, studies have shown that in situations 

where visual cues are deemed unreliable (e.g., noise, sensory 

impairments), sound can trump vision to maintain robust 

perception (Alais and Burr, 2004; Narinesingh et al., 2015; 

Myers et al., 2017). Similar cue (re)weighting has been 

observed with analogous degradation to the auditory channel 

(Bidelman et al., 2019a). 

Still, evidence against a strict cue weighting explanation 

is the fact that RTs for clean A and AV speech were identical 

(Fig. 4), in contrast to the faster response speeds that would 

be expected by multisensory facilitation (e.g., RACE and 

redundant signal models; Miller and Ulrich, 2003; Colonius 

and Diederich, 2006). Similarly, the slower RTs for 

AVþnoise vs Aþnoise speech (Fig. 4) also runs counter to a 

strict RACE framework, where multisensory speech would 

be expected to facilitate response speeds, even in noise. 

These data reveal a functional distinction in multisensory 

processing for isolated speech categorization (present study) 

that is perhaps fundamentally distinct from sentence-level 

recognition, where semantic context, lexical frequency, and 

other indexical cues can aid speech-in-noise perception (e.g., 

Boothroyd and Nittrouer, 1988; Helfer and Freyman, 2009). 

Instead, we attribute the overall slower RTs for AVþnoise 

to reflect cognitive interference in attempting to reconcile 

the minimal categorical cues supplied by our CV visemes 

with the more salient ones from the auditory-phonetic input 

(Files et al., 2015) coupled with the inherent listening effort 

associated with degraded-speech perception tasks (Picou 

et al., 2016; Bidelman and Yellamsetty, 2017; Bidelman 

et al., in press). Under this interpretation, the relative invari-

ance in CP slope but counterintuitive slower RT in 

AVþnoise could reflect a dissociable effect in pre- vs post-

labeling aspects of CP (Braida, 1991); V cues help lattice 

(i.e., sharpen) the categorical object at a pre-perceptual stage 

resulting in robust identification [Fig. 2(A)] but noise 

impairs the speed of access to this representation post-

perceptually, as reflect in the delayed RTs (Fig. 4). 

The notion of AV integration itself has been questioned 

since animal work has shown visual stimuli modulate corti-

cal responses in auditory cortical fields independently of 

visual stimulus category (Kayser et al., 2008). Calvert et al. 
(1997) even suggested that activation of primary auditory 

J. Acoust. Soc. Am. 146 (1), July 2019 Bidelman et al. 67 



cortex during lip reading implies visual cues influence per-

ception even before speech sounds are categorized into pho-

nemes (for review, see Bernstein and Liebenthal, 2014). 

Visual cues precede the corresponding auditory signal, so 

they may also serve a predictive role in facilitating speech 

processing, particularly in noisy situations (Golumbic et al., 
2013). Unfortunately, behavior alone cannot delineate 

accounts of our data based on reduction in stimulus uncer-

tainly due to additional (AV) information or true sharpening 

of the category—although these explanations need not be 

mutually exclusive. Ongoing neuroimaging experiments are 

currently underway in our laboratory to adjudicate these 

competing mechanisms (e.g., Bidelman et al., 2019). 

V. CONCLUSIONS 

In sum, our findings support a view of multimodal inte-

gration in which observers use available cues from multiple 

sensory modalities to perceptually categorize speech, espe-

cially when the acoustic signal is impoverished. While the 

present study was not designed to provide a mechanistic 

account of how visual and auditory cues may combine or 

interact in CP, our results provide important evidence that 

the perceptual and categorical organization of speech is not a 

unimodal process. Visual cues reduce the precision of cate-

gorical representations leading to sharper phonetic identifica-

tion whereas noise exerts the opposite pattern, increasing 

variability in CP and leading to less precise speech catego-

ries. Though controversial, dyslexia has been linked to 

poorer CP (Messaoud-Galusi et al., 2011; Noordenbos and 

Serniclaes, 2015; Hakvoort et al., 2016; Zoubrinetzky et al., 
2016)—a deficit which may be exacerbated in noise (Calcus 

et al., 2016). Future work could focus on identifying possible 

contributions that information from visual and additional 

sensory modalities make to auditory speech comprehension 

in normal and disordered populations and in other complex 

perceptual scenarios (e.g., reverberation, visual noise 

interference). 
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