
Speech categorization is better described by induced rather 
than evoked neural activity 

Md Sultan Mahmud,1,a) Mohammed Yeasin, 1 and Gavin M. Bidelman2,b) 

1Department of Electrical and Computer Engineering, University of Memphis, 3815 Central Avenue, Memphis, Tennessee 38152, USA 
2School of Communication Sciences and Disorders, University of Memphis, 4055 North Park Loop, Memphis, Tennessee 38152, USA 

ABSTRACT: 
Categorical perception (CP) describes how the human brain categorizes speech despite inherent acoustic variability. 

We examined neural correlates of CP in both evoked and induced electroencephalogram (EEG) activity to evaluate 

which mode best describes the process of speech categorization. Listeners labeled sounds from a vowel gradient 

while we recorded their EEGs. Using a source reconstructed EEG, we used band-specific evoked and induced neural 

activity to build parameter optimized support vector machine models to assess how well listeners’ speech categoriza-

tion could be decoded via whole-brain and hemisphere-specific responses. We found whole-brain evoked b-band 

activity decoded prototypical from ambiguous speech sounds with 70% accuracy. However, induced c-band oscil-

lations showed better decoding of speech categories with 95% accuracy compared to evoked b-band activity 

(70% accuracy). Induced high frequency (c-band) oscillations dominated CP decoding in the left hemisphere, 

whereas lower frequencies (h-band) dominated the decoding in the right hemisphere. Moreover, feature selection 

identified 14 brain regions carrying induced activity and 22 regions of evoked activity that were most salient in 

describing category-level speech representations. Among the areas and neural regimes explored, induced c-band 

modulations were most strongly associated with listeners’ behavioral CP. The data suggest that the category-level 

organization of speech is dominated by relatively high frequency induced brain rhythms. 
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I. INTRODUCTION 

The human brain classifies diverse acoustic information 

into smaller, more meaningful groupings (Bidelman and 

Walker, 2017), a process known as categorical perception 

(CP). CP plays a critical role in auditory perception, speech 

acquisition, and language processing. Brain imaging studies 

have shown that neural responses elicited by prototypical 

speech sounds (i.e., those heard with a strong phonetic cate-

gory) differentially engage Heschl’s gyrus (HG) and the 

inferior frontal gyrus (IFG) compared to ambiguous speech 

(Bidelman et al., 2013; Bidelman and Lee, 2015; Bidelman 

and Walker, 2017). Previous studies also demonstrate that 

the N1 and P2 waves of the event-related potentials (ERPs) 

are highly sensitive to speech perception and correlate with 

CP (Alain, 2007; Bidelman et al., 2013; Mankel et al., 
2020). Our recent study (Mahmud et al., 2020b) also dem-

onstrated that different brain regions are associated with the 

encoding vs decision stages of processing while categorizing 

speech. These studies demonstrate that temporal dynamics 

of evoked activity provide a neural correlation of the differ-

ent processes underlying speech categorization. However, 

ERP studies do not reveal how induced brain activity (so-

called neural oscillations) might contribute to this process. 

The electroencephalogram (EEG) can be divided into 

evoked (i.e., phase-locked) and induced (i.e., non-phase-locked) 

responses that vary in a frequency-specific manner (Shahin et al., 
2009). Evoked responses are largely related to the stimulus, 

whereas induced responses are additionally linked to different 

perceptual and cognitive processes that emerge during task 

engagement. These later brain oscillations (neural rhythms) play 

an important role in perceptual and cognitive processes and 

reflect different aspects of speech perception. For example, low 

frequency [e.g., h (4–8 Hz)] bands are associated with syllable 

segmentation (Luo and Poeppel, 2012), whereas the a (9–13 Hz) 

band has been linked to attention (Klimesch, 2012) and speech 

intelligibility (Dimitrijevic et al., 2017). Several studies report 

that listeners’ speech categorization efficiency varies in accor-

dance with their underlying induced and evoked neural activity 

(Bidelman et al., 2013; Bidelman and Alain, 2015; Bidelman 

and Lee, 2015). For instance, Bidelman assessed correlations 

between ongoing neural activity (e.g., induced activity) and the 

slopes of listeners’ identification functions, reflecting the strength 

of their CP (Bidelman, 2017). Listeners were slower and varied 

in their classification of more category-ambiguous speech 

sounds, which covaried with increases in induced c activity 

(Bidelman, 2017). Changes in b (14–30 Hz) power are also 

strongly associated with listeners’ speech identification skills 

(Bidelman, 2015). The b frequency band is  linked with auditory  

template matching (Shahin et al., 2009) between stimuli and 

internalized representations kept in memory (Bashivan et al., 
2014), whereas the higher c frequency range (>30 Hz) is 
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associated with auditory object construction (Tallon-Baudry and 

Bertrand, 1999) and local network synchronization (Giraud and 

Poeppel, 2012; Haenschel et al., 2000; Si et al., 2017). 

Studies also demonstrate hemispheric asymmetries in 

neural oscillations. During syllable processing, there is a 

dominance of c frequency activity in the left hemisphere 

(LH) and h frequency activity in the right hemisphere (RH) 

(Giraud et al., 2007; Morillon et al., 2012). Other studies 

show that during speech perception and production, lower 

frequency bands (3–6 Hz) better correlate with behavioral 

reaction times (RTs) than with higher frequencies 

(20–50 Hz; Yellamsetty and Bidelman, 2018). Moreover, 

the induced c-band correlates with speech discrimination 

and perceptual computations during acoustic encoding (Ou 

and Law, 2018), further suggesting it reflects a neural repre-

sentation of speech above and beyond evoked activity alone. 

Still, given the high dimensionality of the EEG data, it 

remains unclear which frequency bands, brain regions, and 

“modes” of neural function (i.e., evoked vs induced signaling) 

are most conducive to describing the neurobiology of speech 

categorization. To this end, the recent application of machine 

learning (ML) to neuroscience data might prove useful in iden-

tifying the most salient features of brain activity that predict 

human behaviors. ML is an entirely data-driven approach that 

“decodes” neural data with minimal assumptions on the nature 

of exact representation or where those representations emerge. 

Germane to the current study, ML has been successfully 

applied to decode the speed of listeners’ speech identification 

(Al-Fahad et al., 2020) and related receptive language brain 

networks (Mahmud et al., 2020b) from multichannel EEGs. 

Departing from previous hypothesis-driven studies 

(Bidelman, 2017; Bidelman and Alain, 2015; Bidelman and 

Walker, 2017), the present work used a comprehensive data-

driven approach [i.e., stability selection and support vector 

machine (SVM) classifier] to investigate the neural mecha-

nisms of speech categorization using whole-brain electro-

physiological data. Our goals were to evaluate which neural 

regime [i.e., evoked (phase-synchronized ERP) vs induced 

oscillations], frequency bands, and brain regions are most 

associated with CP using whole-brain activity via a data-

driven approach. Based on prior work, we hypothesized that 

evoked and induced brain responses would both differentiate 

the degree to which speech sounds carry category-level infor-

mation (i.e., prototypical vs ambiguous sounds from an 

acoustic-phonetic continuum). However, we predicted 

induced activity would best distinguish category-level speech 

representations, suggesting a dominance of endogenous brain 

rhythms in describing the neural underpinnings of CP. 

II. MATERIALS & METHODS 

A. Participants 

Forty-eight young adults (15 males, 33 females; aged 

18–33 years old) participated in the study (Bidelman et al., 
2020; Bidelman and Walker, 2017; Mankel et al., 2020). All 

participants had normal hearing sensitivity [i.e., <25 dB HL 

(hearing level) between 250 and 8000 Hz] and no history of 

neurological disease. Listeners were right-handed, native 

English speakers, and had achieved a collegiate level of edu-

cation. All participants were paid for their time and gave 

informed written consent in accordance with the Declaration 

of Helsinki and a protocol approved by the Institutional 

Review Board at the University of Memphis. 

B. Stimuli and task 

We used a synthetic five-step vowel token continuum to 

examine the most discriminating brain activity (i.e., evoked 

or induced activity) while categorizing prototypical vowel 

speech sounds from ambiguous speech (Bidelman et al., 
2013). Speech spectrograms are represented in Fig. 1. Each 

speech token was 100 ms, including 10 ms rise/fall to mini-

mize the spectral splatter in the stimuli. Each speech token 

contained an identical voice fundamental frequency (F0), 

second (F2), and third formant (F3) frequencies (F0, 

150 Hz; F2, 1090 Hz; and F3, 2350 Hz). The first formant 

(F1) was varied over five equidistant steps (430–730 Hz) to 

produce a perceptual continuum from /u/ to /a/. 

Stimuli were delivered binaurally at an intensity of 

83 dB SPL through earphones (ER 2; Etymotic Research, 

Elk Grove Village, IL, USA). Participants heard each token 

150–200 times presented in random order. They were asked 

to label each sound in a binary identification task (“/u/” or “/ 

a/”) as fast and accurately as possible. Their responses and 

RTs were logged. The interstimulus interval (ISI) was jit-

tered randomly between 400 and 600 ms with a 20 ms step. 

C. EEG recordings and data pre-procedures 

EEGs were recorded from 64 channels at standard 10–10 

electrode locations on the scalp and digitized at 500 Hz using 

neuroscan amplifiers (SynAmps RT; Compumedics Neuroscan, 

Charlotte, NC, USA). Subsequent preprocessing was conducted 

in the Curry 7 (neuroimaging software suite; Compumedics 

Neuroscan, Charlotte, NC, USA), and customized routines were 

coded in MATLAB (MathWorks, Natick, MA, USA). Ocular arti-

facts (e.g., eye-blinks) were corrected in the continuous EEG 

using principal component analysis (PCA) and then filtered 

(1–100 Hz; notched filtered 60 Hz). Trials with voltage 125 lV 

were discarded. Cleaned EEGs were then epoched into single 

trials (200–800 ms, where t ¼ 0 was the stimulus onset) and 

common average referenced. For details, see Bidelman et al. 
(2020) and Bidelman and Walker (2017). 

FIG. 1. (Color online) Speech stimuli. Acoustic spectrograms of the speech 

continuum from /u/ and /a/. Arrows, first formant frequency. 
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D. EEG source localization 

To disentangle the functional generators of CP-related 

EEG activity, we reconstructed the sources of the scalp 

recorded EEG by performing a distributed source analysis 

on single-trial data in Brainstorm software (Tadel et al., 
2011). We used a realistic boundary element head model 

(BEM) volume conductor and standard low-resolution brain 

electromagnetic tomography (sLORETA) as the inverse 

solution within Brainstorm (Tadel et al., 2011). From each 

single-trial sLORETA volume, we extracted the time-

courses within the 68 functional regions of interest (ROIs) 

across the LHs and RHs defined by the Desikan-Killiany 

(DK) atlas (Desikan et al., 2006; LH, 34 ROIs; RH, 34 

ROIs). Single-trial data were baseline corrected to the 

epoch’s pre-stimulus interval (200–0 ms). 

Because we were interested in decoding prototypical 

(Tk1 and Tk5) from ambiguous speech (Tk3), we averaged 

responses to the end point tokens (hereafter referred to as 

Tk1/5) responses since they reflect prototypical vowel cate-

gories (“u” vs “a”). In contrast, Tk3 reflects an ambiguous 

category that listeners sometimes label as “u” or “a” 

(Bidelman et al., 2020; Bidelman and Walker, 2017; 

Mankel et al., 2020). To ensure an equal number of trials for 

prototypical and ambiguous stimuli, we considered 50% of 

the data from the merged Tk1/5 samples. 

E. Time-frequency analysis 

Time-frequency analysis was conducted via wavelet 

transform (Herrmann et al., 2014). First, we computed the 

ERP using bootstrapping by randomly averaged over 100 

trials with the replacement 30 times (Al-Fahad et al., 2020) 

for each stimulus condition (e.g., Tk1/5 and Tk3) per subject 

and source ROI (e.g., 68 ROIs). We then applied the Morlet 

wavelet transform to each ROI average data (i.e., ERP) with 

time steps of 2 ms and an increment step frequency of 1 Hz 

from low to high frequency (e.g., 1–100 Hz) across the 

epoch, which provided only evoked frequency-specific 

activity (i.e., time- and phase-locked to stimulus onset). For 

computing induced activity, we performed a similar Morlet 

wavelet transform on a single-trial basis for each ROI and 

then computed the absolute value of each trial spectrogram. 

Next, we averaged the resulting time-frequency decomposi-

tions (Herrmann et al., 2014), resulting in a spectral repre-

sentation that contains the total activity. To isolate induced 

responses, we subtracted the evoked activity from the total 

activity (Herrmann et al., 2014). We then extracted the dif-

ferent frequency band signals from the evoked and induced 

activity time-frequency maps for each brain region (e.g., 68 

ROIs). Example evoked and induced time-frequency maps 

from the primary auditory cortex [i.e., transverse temporal 

(TRANs)] are represented in Fig. 2. We did not separate 

early vs late windows in this study as we have previously 

shown induced activity during speech categorization tasks is 

largely independent of motor responses (Bidelman, 2015). 

Spectral features of different bands (h, a, b, and c) were 

quantified as the mean power over the full epoch. We 

concatenated four frequency bands that resulted in 4 

 68 ¼ 272 features for each response type (e.g., evoked vs 

induced) per speech condition (Tk1/5 vs Tk3). We con-

ducted a paired t-test between evoked and induced feature 

vectors [e.g., concatenating all frequency band features of 

each ROI and stimulus type (Tk1/5 vs Tk3)] and found sta-

tistical significance [t(783 359) ¼ 1212.53, p < 0.001] 

between the two brain modes. We also conducted a one-way 

analysis of variance (ANOVA) to test for a band effect (h-, 

a-, b-, and c-band activity) within each brain regime. 

Band modulations were evident in both induced [F(4,2876) 

¼ 247 499.16, p < 0.001] and evoked [F(4,2876) 

¼ 108 336.47, p < 0.001] activities. To assess which regime 

(evoked vs induced) and oscillatory band (h, a, b, and c) is  

more important to speech categorization, we next used ML 

classifiers to decode the data. We separately (i.e., evoked 

and induced) submitted the individual frequency bands to 

the SVM and k-nearest neighbor (KNN) classifiers and all 

concatenated features (e.g., h, a, b, and c) to stability selec-

tion to investigate which frequency bands and brain regions 

decode prototypical vowels (e.g., Tk1/5) from the ambigu-

ous (Tk3) vowel. The features were z-scored prior to the 

SVM and KNN to normalize them to a common range. 

F. SVM classification 

Our main goal was to decode prototypical vs ambiguous 

speech rather than investigate individual differences in speech 

categorization per se. Thus, all trials across listeners were 

used in the analysis without regard for individuals to decode 

the speech stimulus categories (Tk1/5 vs Tk3) from the EEGs 

at the group level (N ¼ 48 participants). We used the parame-

ter optimized SVM that yields a better classification perfor-

mance with small sample size data (Bidelman et al., 2019; 

Durgesh and Lekha, 2010; Mahmud et al., 2020b). We chose 

SVM since our recent study (Mahmud et al., 2020a) demon-

strated this classifier yields slightly better performance as 

compared to KNN and AdaBoost for binary classification 

using EEG spectral features. (Note, we report decoding results 

using KNN classifiers in the Appendix as a confirmatory anal-

ysis to corroborate the main SVM findings.) The tunable 

parameters (e.g., kernel, C, c) in the SVM model greatly affect 

the classification performance. We randomly split the data 

into training and test sets at 80% and 20%, respectively. 

During the training phase (i.e., using 80% data), we conducted 

a grid search approach with fivefold cross-validation, kernels 

¼ “Radial basis function (RBF)” fine-tuned the C, and  c 
parameters to find the optimal values so that the classifier can 

accurately distinguish prototypical vs ambiguous speech 

(Tk1/5 vs Tk3) in the test data that models have never seen. 

Once the models were trained, we selected the best model 

with the optimal value of C and c and predicted the unseen 

test data (by providing the attributes but no class labels). 

Classification performance metrics (accuracy, F1-score, preci-

sion, and recall) were calculated using standard formulas. The 

optimal values of C and c for different analysis scenarios are 

given in the Appendix. 
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G. Stability selection to identify critical brain regions 
of CP 

Our data comprised a large number [68 ROIs  4 bands 

(h, a, b, and c) ¼ 272 features] of spectral measurements for 

each stimulus condition of interest (e.g., Tk1/5 vs Tk3) per 

ROI and brain regime (e.g., evoked and induced activities). 

We aimed to select a limited set of the most salient discrimi-

nating features for evoked and induced regimes via stability 

selection (Meinshausen and B€uhlmann, 2010; see details in 

the Appendix). 

During the stability selection implementation, we con-

sidered a sample fraction ¼ 0.75, the number of resamples 

¼ 1000, and tolerance ¼ 0.01 (Meinshausen and B€uhlmann, 

2010). In the Lasso (least absolute shrinkage and selection 

operator) algorithm, the feature scores were scaled between 

0 and 1, where 0 is the lowest score (i.e., irrelevant feature) 

and 1 is the highest score (i.e., most salient or stable fea-

ture). We estimated the regularization parameter from the 

data using the least angle regression (LARs) algorithm. 

Over 1000 iterations, the randomized Lasso algorithm pro-

vided the overall feature scores (0–1) based on the number 

of times a variable was selected. We ranked stability scores 

to identify the most important, consistent, stable, and 

invariant features that could decode speech categories via 

the EEG. We submitted these ranked features and corre-

sponding class labels to a SVM classifier with different sta-

bility thresholds and observed the model performance. We 

used this process separately for induced and evoked brain 

activities. 

III. RESULTS 

A. Behavioral results 

Listeners’ behavioral identification (%) functions and 

RTs (ms) for speech token categorizations are illustrated in 

Figs. 3(B) and 3(C), respectively. Responses abruptly shifted 

in speech identity (/u/ vs /a/) near the midpoint of the contin-

uum, reflecting a change in the perceived category. The 

behavioral speed of speech labeling (e.g., RT) was computed 

from listeners’ median response latencies for a given condi-

tion across all trials. RTs outside of 250–2500 ms were 

deemed outliers and excluded from further analysis 

(Bidelman et al., 2013; Bidelman and Walker, 2017). For 

each continuum, individual identification scores were fit with 

a two-parameter sigmoid function; P ¼ 1=½1 þ eb1ðxb0Þ 
where P is the proportion of the trial identification as a func-

tion of a given vowel, x is the step number along the stimulus 

continuum, and b0 and  b1 are the location and slope of the 

logistic fit estimated using the nonlinear least squares regres-

sion, respectively (Bidelman and Walker, 2017). The slopes 

of the sigmoidal psychometric functions reflect the strength 

of CP [Fig. 3(A)]. 

B. Decoding categorical neural responses using 
band frequency features and SVM 

We investigated the decoding of prototypical vowels 

from the ambiguous vowel (i.e., category-level representa-

tions) using the SVM neural classifier on the whole-brain 

(all 68 ROIs) and individual hemisphere (LH and RH) data 

FIG. 2. (Color online) Grand average neural oscillatory responses to prototypical vowel [e.g., Tk1/5 and ambiguous speech token (Tk3)]. [(A),(C)] Evoked 

activity for prototypical vs ambiguous tokens. [(B),(D)] Induced activity for prototypical vs ambiguous tokens. Responses are from primary auditory cortex 

(PAC; lTRANS, left transverse temporal gyrus). 
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separately for induced vs evoked activity (for comparable 

KNN classifier results see Appendix). The best model perfor-

mance on the test dataset is reported in Fig. 4 and Table I. 

The mean accuracy and error variance of the fivefold cross-

validation accuracy is reported in the Appendix (Fig. 8). 

Using whole-brain evoked h, a, b, and c frequency 

responses, speech stimuli (e.g., Tk1/5 vs Tk 3) were cor-

rectly distinguished at 66%–69% accuracy. Among all of 

the evoked frequency bands, b-band was optimal to decode 

the speech categories (69.61% accuracy). The LH data 

revealed that h-, a-, b-, and c-bands decoded speech stimuli 

at accuracies between 63% and 65%, whereas decoding 

from the RH was slightly poorer at 57%–62%. 

Using whole-brain induced h, a, b, and c frequency 

responses, speech stimuli were decodable at accuracies of 

89%–95%. Among all of the induced frequency bands, the c 
band showed the best speech segregation (94.9% accuracy). 

Hemisphere-specific data again showed lower accuracy. LH 

oscillations decoded speech categories at 76%–87% accu-

racy, whereas the RH yielded 80%–84% accuracy. 

C. Decoding brain regions associated with CP 
(evoked vs induced) 

We separately applied the stability selection 

(Meinshausen and B€uhlmann, 2010) to induced and evoked 

activity features to identify the most critical brain areas (e.g., 

ROIs) that have been linked with speech categorization. 

Spectral features of brain ROIs were considered stable if the 

speech decoding accuracy was >70%. The effects of the sta-

bility scores on speech sound classification are represented in 

Fig. 5. Each bin of the histogram illustrates the number of 

features in a range of stability scores. In this work, the num-

ber of  features (labeled  in  Fig.  5) represents the neural activ-

ity of different frequency bands, and the unique brain regions 

(labeled as ROIs in Fig. 5) represent the distinct functional 

brain regions of the DK atlas. The semi bell-shaped solid 

black and dotted red lines demonstrate the classifier accuracy 

and area under the curve (AUC), respectively. We submitted 

the neural features identified at different stability thresholds 

to the SVMs. This allowed us to determine whether the col-

lection of neural measures identified via ML were relevant to 

classifying speech sound categorization. 

For induced responses, most features (60%) yielded sta-

bility scores of 0–0.1, meaning 163/272 (60%) were selected 

less than 10% of the time out of 1000 iterations from 68 

ROIs. A stability score of 0.2 selected 47/86 (32%) of the 

features from 47 ROIs that could decode speech categories 

at 96.9% accuracy. The decoding performance decreased 

with an increasing stability score (i.e., more conservative 

variable/brain ROI selections), resulting in a reduced feature 

set that retained only the most meaningful features distin-

guishing speech categories from a few ROIs. For instance, 

corresponding to the stability threshold 0.5, 25 (10%) fea-

tures were selected from 21 brain ROIs that yielded the speech 

FIG. 3. (Color online) Behavioral results. (A) Behavioral slope. (B) Psychometric functions showing % “a” identification of each token. Listeners’ percep-

tion abruptly shifts near the continuum midpoint, reflecting a flip in the perceived phonetic category (i.e., “u” to “a”). (C) RTs for identifying each token. 

RTs are faster for prototype tokens (i.e., Tk1/5) and slow when categorizing ambiguous tokens at the continuum’s midpoint (i.e., Tk3). Errorbars 

¼ 61 s.e.m. (standard error of the mean). 
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categorization 92.7% accurately. However, corresponding to 

the stability threshold 0.8, only two features were selected 

from two brain ROIs that decoded the CP at 60.6%, still 

greater than the chance level (i.e., 50%). Performance 

improved by 10% (86.5%) when the stability score was 

changed from 0.7 (selected brain ROIs is 9) to 0.6 (selected 

brain ROIs is 14). A BrainO visualization (Moinuddin et al., 
2019) of these brain ROIs is shown in Fig. 6. 

Using evoked activity, the maximum decoding accuracy 

was 78.0% at a 0.1 stability threshold. Here, 43% of the fea-

tures produced a stability score between 0.0 and 0.1. These 

118 (43%) features are not informative because they 

decreased the model’s accuracy to properly categorize 

speech. Corresponding to the stability scores 0.9, only eight 

features were selected from the six brain ROIs, which 

decoded speech at 65.8% accuracy. At a stability score 0.6, 

29 (1%) features were selected from 22 brain ROIs, corre-

sponding to an accuracy performance of 71.4%. 

Our goal is to build an interpretable model that can 

describe speech categorization with reasonable accuracy 

using the smallest number of brain ROIs/features. Usually, 

the knee point is a location along the stability curve which 

balances model complexity (i.e., feature count) and decod-

ing accuracy. Thus, 0.6 might be considered an optimal sta-

bility score (i.e., the knee point of a function in Fig. 5) as it  

decoded speech well above the change (>70%) with a mini-

mal (and, therefore, more interpretable) feature set for both 

induced and evoked activity. Brain ROIs corresponding to 

the optimal stability score (0.6) are depicted in Fig. 7 and 

Tables II and III for both evoked and induced activities. 

D. Brain-behavior relationships 

To examine the behavioral relevance of the brain ROIs 

identified in the stability selection, we conducted the multi-

variate weighted least square (WLS) analysis regression 

FIG. 4. (Color online) Decoding categorical neural encoding using different frequency band features of the source-level EEG. The SVM results classifying 

prototypical (Tk1/5) vs ambiguous (Tk 3) speech sounds. (A) Whole-brain data (e.g., 68 ROIs), (B) LH (e.g., 34 ROIs), and (C) RH (e.g., 34 ROIs). Chance 

level ¼ 50%. 

TABLE I. Performance metrics of the SVM classifier for decoding prototypical vs ambiguous vowels (i.e., categorical neural responses) using whole-brain 

data. 

Neural activity Frequency band Accuracy (%) AUC (%) Precision (%) Recall (%) F1-score (%) 

Evoked h 67.53 67.59 68.00 68.00 67.00 

a 67.88 67.92 68.00 68.00 67.00 

b 69.61 69.64 68.00 68.00 68.00 

c 66.66 66.65 67.00 67.00 67.00 

Induced h 90.97 90.98 91.00 91.00 91.00 

a 89.06 89.05 89.00 89.00 89.00 

b 93.23 93.20 93.00 93.00 93.00 

c 94.96 94.96 95.00 95.00 95.00 
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(Ruppert and Wand, 1994). We conducted the WLS between 

the individual frequency band features (i.e., evoked and 

induced) and the slopes of the behavioral identification func-

tions [i.e., Fig. 3(A)], which indexes the strength of listeners’ 

CP. The WLS regression for induced activity is shown in 

Table II and the WLS regression for evoked activity is shown 

in Table III. From the induced data, we found that c fre-

quency activity from six ROIs predicted behavior best 

among all other frequencies, R2 ¼ 0.915, p < 0.0001. 

Remarkably, only two brain regions [including the 

primary auditory cortex (PAC) and rostral anterior cingulate 

L] of the b-band frequency could predict behavioral slopes 

FIG. 5. (Color online) Effect of stability score threshold on model performance during (A) evoked activity and (B) induced activity during the CP task. The 

bottom of the x axis has four labels. Stability score represents the stability score range of each bin (scores range, 0–1); number of features represents the 

number of selected features under each bin; % features represents the corresponding percentage of selected features; and ROIs represents the number of 

cumulative unique brain regions up to the lower boundary of the bin. 

FIG. 6. (Color online) Stable (most consistent) neural network decoding using induced activity. Visualization of brain ROIs corresponding to 0.60 stability 

threshold (14 top selected ROIs), which show categorical organization (e.g., Tk1/5 6¼ Tk3) at 86.5%. (A) LH view (B) RH view, (C) posterior view, and (D) 

anterior view. Color legend demarcations show high (pink), moderate (blue), and low (white) stability scores. l/r, left/right; BKS, bankssts; LO, lateral occip-

ital; POP, pars opercularis; PCG, posterior cingulate; LOF, lateral orbitofrontal; SP, superior parietal; CMF, caudal middle frontal; IP, inferior parietal; 

CAC, caudal anterior cingulate; CUN, cuneus; PRC, precentral; TRANS, transverse temporal; RAC, rostral anterior cingulate. 

1650 J. Acoust. Soc. Am. 149 (3), March 2021 Mahmud et al. 

https://doi.org/10.1121/10.0003572 

https://doi.org/10.1121/10.0003572


(R2 ¼ 0.876, p < 0.00001). Except in the a frequency band, 

evoked activity was poorer at predicting the behavioral CP. 

IV. DISCUSSION 

A. Speech categorization from evoked and induced 
activity 

The present study aimed to examine which modes of 

brain activity and frequency bands of the EEG best decode 

speech categories and the process of categorization. Our 

results demonstrate that at the whole-brain level, evoked b-

band oscillations robustly code (70% accuracy) the cate-

gory structure of speech sounds. However, the induced c-

band showed better performance, classifying speech catego-

ries at 95% accuracy, better than all of the other induced 

frequency bands. Our data are consistent with notions that 

higher frequency bands are associated with speech identifi-

cation accuracy and carry information related to acoustic 

features and quality of speech representations (Yellamsetty 

and Bidelman, 2018). Our results also corroborate previous 

studies that suggest that higher frequency channels of the 

EEG (b,c) reflect auditory-perceptual object construction 

FIG. 7. (Color online) Stable (most consistent) neural network decoded using evoked activity. Visualization of brain ROIs corresponding to 0.60 stability 

threshold (22 top selected ROIs), which decode Tk1/5 from Tk3 at 71.4%. Otherwise, as in Fig. 6. BKS, bankssts; CMF, caudal middle frontal; POP, pars 

opercularis; SP, superior parietal; TRANS, transverse temporal; IST, isthmus cingulate; LO, lateral occipital; IP, inferior parietal; CUN, cuneus; PRC, pre-

central; PT, pars triangularis; POC, postcentral; PERI, Pericalcarine; SUPRA, supra marginal. 

TABLE II. Brain-behavior relations of 14 brain ROIs in different frequency bands and behavioral predictions from the induced activity at a stability thresh-

old 0.6, which yielded an accuracy of 86.5%. 

Frequency band and combined R2 ROI name ROI abbreviation Coefficient p-value Stability score 

h, R2 ¼ 0.807, p < 0.000 01 Pars opercularis L lPOP 0.974 0.013 0.785a 

Posterior cingulate L lPCG 1.759 0.001 0.760 

Caudal anterior cingulate R rCAC 3.163 0.001 0.740 

a, R2 ¼ 0.746, p < 0.000 01 Bankssts L lBKS 0.645 0.249 0.865 

Inferior parietal L lIP 1.594 0.035 0.730 

Precentral L lPRC 1.006 0.117 0.640 

b, R2 ¼ 0.876, p < 0.000 01 TRANs R rTRANS 0.267 0.584 0.620 

Rostral anterior cingulate L lRAC 3.004 0.001 0.605 

c, R2 ¼ 0.915, p < 0.000 01 Lateral occipital R rLO 0.768 0.804 0.805 

Lateral orbitofrontal R rLOF 5.092 0.001 0.755 

Superior parietal R rSP 16.472 0.004 0.740 

Caudal middle frontal R rCMF 3.243 0.188 0.740 

cuneus R rCUN 1.743 0.701 0.675 

Lateral orbitofrontal L lLOF 0.709 0.553 0.625 

aA score of 0.785, for example, means that out of 1000 iterations, the ERP feature of this ROI was selected 785 times by stability selection. 
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(Tallon-Baudry and Bertrand, 1999) and how well listeners 

map vowel sounds to category labels (Bidelman, 2015, 2017). 

Analysis by hemisphere showed that induced c activity 

was dominant in the LH, whereas lower frequency bands 

(e.g., h) were more dominant in the RH. These findings sup-

port the asymmetric engagement of frequency bands during 

syllable processing (Giraud et al., 2007; Morillon et al., 
2012) and the lower frequency bands in RH dominance in 

inhibitory and attentional control (top-down processing dur-

ing complex tasks; Garavan et al., 1999; Price et al., 2019). 

Our results are consistent with the idea that cortical theta 

and gamma frequency bands play a key role in speech 

encoding (Hyafil et al., 2015). They also show that the ML 

model was able to decode acoustic-phonetic information 

(i.e., speech categories) in the LH (using induced high fre-

quency) and in the RH (using low frequencies). 

B. Brain networks involved in speech categorization 

ML (stability selection coupled with SVM) further identi-

fied the most stable, relevant, and invariant brain regions that 

associate with speech categorization. Stability selection iden-

tified 22 and 14 critical brain ROIs using evoked and induced 

activity, respectively. Our results show that induced activity 

better characterizes speech categorization using less neural 

resources (i.e., fewer brain regions) as compared to evoked 

activity. Eight brain ROIs (e.g., bankssts L, lateral occipital R, 

pars opercularis L, superior parietal R, caudal middle frontal 

R, inferior parietal L, precentral L, TRANs R) are common in 

evoked and induced regimes. These eight areas included the 

primary auditory cortex (TRANs R), Brocas’s area (pars oper-

cularis L), and the motor area (precentral L), which are critical 

to speech-language processing. Superior parietal and inferior 

parietal areas have been associated with auditory, phoneme, 

and sound categorizations in particularly ambiguous contexts 

(Dufor et al., 2007; Feng et al., 2018). For the nonoverlapping 

areas in the induced activity, orbitofrontal is associated with 

speech comprehension and rostral anterior cingulate is associ-

ated with speech control (Sabri et al., 2008). Surprisingly, out 

of the identified 14 brain ROIs, 3 ROIs are in h, 3  are  in  a, 2  

are in b, and 6 are in the c-band. Notably, we found that a 

greater number of brain regions were recruited in the c-

frequency band. This result is consistent with the notion that 

high frequency oscillations play a role in network synchroni-

zation and widespread construction of perceptual objects 

related to abstract speech categories (Giraud and Poeppel, 

2012; Haenschel et al., 2000; Si et al., 2017; Tallon-Baudry 

and Bertrand, 1999). Indeed, c-band activity in only six ROIs 

was the best predictor of the listeners’ behavioral speech cate-

gorization. Interestingly, nine ROIs of evoked a-band activity 

were able to predict behavioral slopes better than the induced 

a-band activity. This result supports notions that the a fre-

quency band is associated with attention (Klimesch, 2012) 

and speech intelligibility (Dimitrijevic et al., 2017). 

A main advantage of our data-driven approach is that it 

identifies the frequency bands and brain regions that are best 

linked to speech categorization behaviors from among the 

many thousands of features measurable from the whole-

brain EEG. It is a complement to conventional hypothesis-

driven approaches (Bidelman, 2015; Bidelman and Alain, 

2015; Bidelman and Walker, 2019) but is perhaps more 

hands off in that it requires fewer assumptions about the 

underlying brain mechanisms supporting speech perception. 

TABLE III. Brain-behavior relations of 22 brain ROIs in different frequency bands and behavioral slope predictions from the evoked activity at a stability 

threshold 0.6, which yielded an accuracy of 71.4%. 

Frequency band and combined R2 ROI name ROI abbreviation Coefficient p-value Stability score 

h, R2 ¼ 0.349, p < 0.0184 Caudal middle frontal L lCMF 93.646 0.575 1 

Superior parietal R rSP 89.350 0.603 0.915 

Isthmus cingulate L lIST 46.527 0.671 0.905 

Lateral occipital L lLO 190.348 0.149 0.850 

Pars triangularis R rPT 137.923 0.160 0.710 

Post central R rPOC 180.073 0.015 0.690 

Rostral middle frontal L lRMF 69.220 0.326 0.605 

Post central L lPOC 152.979 0.238 0.600 

a, R2 ¼ 0.863, p < 0.000 01 Bankssts R rBKS 64.139 0.775 1 

TRANs L lTRANS 62.583 0.729 0.905 

Inferior parietal L lIP 986.399 0.027 0.840 

Caudal middle frontal R rCMF 254.140 0.338 0.800 

Inferior parietal R rIP 707.049 0.053 0.690 

Pericalcarine L lPERI 278.456 0.319 0.670 

Precentral L lPRC 163.234 0.368 0.640 

Bankssts L lBKS 947.797 0.0001 0.635 

Supra marginal R rSUPRA 466.985 0.107 0.600 

b, R2 ¼ 0.198, p < 0.0184 Pars opercularis L lPOP 475.923 0.240 0.970 

Lateral occipital R rLO 1119.991 0.157 0.795 

Precentral R rPRC 1485.600 0.008 0.725 

c, R2 ¼ 0.604, p < 0.000 01 Cuneus L lCUN 3730.107 0.160 0.775 

TRANs R rTRANS 262.544 0.0001 0.685 
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Additionally, our findings support theoretical oscillatory 

models and empirical data (Doelling et al., 2019) that sug-

gest induced activity can predict auditory-perceptual proc-

essing better than evoked activity. A disadvantage of this 

data-driven approach is that it is computationally expensive. 

Nonetheless, our data suggest that induced neural activity 

plays a more prominent role in describing the perceptual-

cognitive process of speech categorization than evoked 

modes of brain activity (Doelling et al., 2019). In particular, 

we demonstrate that among these two prominent functional 

modes and frequency channels characterizing the EEG, 

induced c-frequency oscillations best decode the category 

structure of speech and the strength of the listeners’ behav-

ioral identification. In contrast, the evoked activity provides 

a reliable though weaker correspondence with behavior in 

all but the a frequency band. Nevertheless, our study only 

included vowel stimuli. Additional studies are required to 

examine if our findings generalize to other speech sounds 

(e.g., consonants) which elicit stronger/weaker categorical 

percepts (Pisoni, 1973) or those which are more or less 

familiar to a listener (e.g., native vs nonnative speech; 

Bidelman and Lee, 2015). 
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APPENDIX A 

1. SVM optimal parameter values 

The optimal parameters of the SVM classifier are given 

in Table IV in different analysis scenarios. 

2. Mean accuracy of SVM fivefold cross-validation 
results 

Using whole-brain evoked h, a, b, and c frequency 

responses, speech stimuli (e.g., Tk1/5 vs Tk 3) were cor-

rectly distinguished at a mean accuracy of 61%–64%. The 

LH data revealed that h-, a-, b-, and c-bands decoded speech 

stimuli at mean accuracies between 57%–63%, whereas 

decoding from the RH was slightly poorer at 57%–61%. 

The mean accuracy is 5% less than the best model using 

the evoked activity. 

Using whole-brain induced h, a, b, and c frequency 

response speech stimuli were decodable at mean accuracies 

of 87%–93%. Still, among all induced frequency bands, the 

c-band showed the best speech segregation (93% mean 

accuracy). The LH oscillations decoded speech categories at 

75%–85% mean accuracy, whereas the RH yielded 

80%–82% mean accuracy. The maximum deviation of accu-

racy was 2% from the best model using induced activity 

(see Fig. 8). 

3. Decoding categorical neural responses using band 
frequency features and KNN 

We used a KNN classifier to corroborate the main SVM 

findings with a different algorithm. We split the data into 

training and test sets of 80% and 20%, respectively. During 

the training phase, we tuned the value of k parameters from 

one to ten to achieve the maximum accuracy. Classification 

results of the KNN on the test dataset are reported in Fig. 9. 

The KNN classifier exhibited similar though slightly inferior 

results than the SVM classifier exhibited, justifying our 

choice of the SVM model in the main text. 

Using whole-brain evoked h, a, b, and c frequency 

responses, speech stimuli (e.g., Tk1/5 vs Tk 3) were cor-

rectly distinguished at 64%–68% accuracy. Among all 

evoked frequency bands, the b-band was optimal to decode 

the speech categories (67.70% accuracy). The LH data 

revealed that h-, a-, b-, and c-bands decoded speech stimuli 

at accuracies between 58–63%, whereas decoding from 

the RH was slightly poorer at 57%–62% accuracy. 

Using whole-brain induced h, a, b, and c frequency 

responses, the speech stimuli were decodable at accuracies 

of 88%–94%. Among all induced frequency bands, the c-

band showed the best speech segregation (94.42% accu-

racy). Hemisphere-specific data again showed lower accu-

racy. The LH oscillations decoded speech categories at 

76%–86% accuracy, whereas the RH yielded 79%–84% 

accuracy. 

TABLE IV. Optimal parameters (e.g., C and c) of the SVM. 

Neural activity Frequency band Full brain LH RH 

Evoked h C ¼ 30, c ¼ 0.001 C ¼ 20, c ¼ 0.001 C ¼ 10, c ¼ 0.004 

a C ¼ 40, c ¼ 0.0001 C ¼ 20, c ¼ 0.001 C ¼ 20, c ¼ 0.003 

b C ¼ 40, c ¼ 0.001 C ¼ 30, c ¼ 0.002 C ¼ 20, c ¼ 0.002 

c C ¼ 10, c ¼ 0.0001 C ¼ 30, c ¼ 0.003 C ¼ 20, c ¼ 0.002 

Induced h C ¼ 20, c ¼ 0.001 C ¼ 10, c ¼ 0.001 C ¼ 10, c ¼ 0.001 

a C ¼ 20, c ¼ 0.001 C ¼ 20, c ¼ 0.001 C ¼ 20, c ¼ 0.001 

b C ¼ 40, c ¼ 0.001 C ¼ 40, c ¼ 0.001 C ¼ 40, c ¼ 0.001 

c C ¼ 30, c ¼ 0.001 C ¼ 30, c ¼ 0.001 C ¼ 30, c ¼ 0.001 
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4. Stability selection 

Stability selection is a state-of-the-art feature selec-

tion method that works well in high dimensional or sparse 

data based on the Lasso method (Meinshausen and 

B€uhlmann, 2010; Yin et al., 2017). Stability selection can 

identify the most stable (relevant) features out of a large 

number of features over a range of model parameters 

even if the necessary conditions required for the original 

Lasso method are violated (Meinshausen and B€uhlmann, 

2010). 

FIG. 9. (Color online) Decoding categorical neural encoding using different frequency band features of the source-level EEG. The KNN results classifying 

prototypical (Tk1/5) vs ambiguous (Tk 3) speech sounds. (A) Whole-brain data (e.g., 68 ROIs), (B) LH (e.g., 34 ROIs), and (C) RH (e.g., 34 ROIs). 

FIG. 8. (Color online) Decoding categorical neural encoding using different frequency band features of the source-level EEG. Mean accuracy of the SVM 

fivefold cross-validation results classifying prototypical (Tk1/5) vs ambiguous (Tk 3) speech sounds. (A) Whole-brain data (e.g., 68 ROIs), (B) LH (e.g., 34 

ROIs), and (C) RH (e.g., 34 ROIs). Chance level ¼ 50%. Errorbars ¼ 61 s.e.m. 
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In the stability selection, a feature is considered to be 

more stable if it is more frequently selected over repeated 

subsamplings of the data (Nogueira et al., 2017). Basically, 

the randomized Lasso randomly subsamples the training 

data and fits an L1 penalized logistic regression model to 

optimize the error. Over many iterations, feature scores are 

(re)calculated. The features are shrunk to zero by multiply-

ing the features’ coefficient by zero while the stability score 

is lower. Surviving nonzero features are considered impor-

tant variables for classification. Detailed interpretation and 

mathematical equations of the stability selection are 

explained in Meinshausen and B€uhlmann (2010). The stabil-

ity selection solution is less affected by the choice of the ini-

tial regularization parameters. Consequently, it is extremely 

general and widely used in high dimensional data even 

when the noise level is unknown. 
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