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Abstract 
Body sensor network (BSN) is a promising human–centric technology to monitor neurophysiological data. We propose a fully-
reconfigurable architecture that addresses the major challenges of a heterogenous BSN, such as scalabiliy, modularity and 
flexibility in deployment. Existing BSNs especially with Electroencephalogarm (EEG) have these limitations mainly due to 
the use of driven-right-leg (DRL) circuit. We address these limitations by custom-designing DRL-less EEG smart sensing nodes 
(SSN) for modular and spatially distributed systems. Each single-channel EEG SSN with a input-referred noise of 0.82 μVrms and 
CMRR of 70 dB (at 60 Hz), samples brain signals at 512 sps. SSNs in the network can be configured at the time of deployment 
and can process information locally to significantly reduce data payload of the network. A Control Command Node (CCN) 
initializes, synchronizes, periodically scans for the available SSNs in the network, aggregates their data and sends it wirelessly to 
a paired device at a baud rate of 115.2 kbps. At the given settings of the I2C bus speed of 100 kbps, CCN can configure up to 39 
EEG SSNs in a lego-like platform. The temporal and frequency-domain performance of the designed BDRL-less^ EEG SSNs is 
evaluated against a research-grade Neuroscan and consumer-grade Emotiv EPOC EEG. The results show that the proposed 
network system with wearable EEG can be deployed in situ for continuous brain signal recording in real-life scenarios. The 
proposed system can also seamlessly incorporate other physiological SSNs for ECG, HRV, temperature etc. along with EEG 
within the same topology. 
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Introduction 

Body Sensor Networks (BSN) with wearable physiological 
sensors can provide quality of care for those who need fre-
quent and yet unobtrusive health monitoring. There are sev-
eral wearable health monitoring systems developed in the 
recent years to provide low-cost, continuous all-day and 
any-place physiological monitoring, eg., CodeBlue [1], 

Mercury [2], SATIRE [3], GumPack [4] and few other in 
the literature [5–7]. Some other BSN, for instance, LiveNet 
[8], AMON [9], LifeGuard [10] and reconfigurable wireless 
nodes [11, 12] are also developed for vital data monitoring 
(Electrocardiography (ECG), Blood Pressure), activity 
tracking and galvanic skin response (GSR) measurement. 

For BSNs with EEG, several studies have featured wireless 
EEG monitoring using commercial-off-the-shelf (COTS) 
components and custom-fabricating ICs [13–15]. A portable 
8-channel EEG has been described in [16] which uses long 
lead wires to sense the signals and connects to the main mod-
ule for wireless data streaming using ZigBee. Human++ [17], 
CleveMed [18], MICA2 [19, 20], QUASAR’s sensing tech-
nology [21] are also reported in the literature. To the best of 
our knowledge, all of the above-mentioned research-proto-
types as well as commerical EEG systems like Emotiv [22], 
Muse [23], Neurosky [24], etc. have a rigid architecture in 
terms of their number of channels. None of the existing wire-
less EEG devices is reconfigurable, intelligent, modular and 
scalable. They are designed for a fixed number of channels. 
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However, a similar study of EEG sensing with scalable nodes 
is reported [25, 26] but, it is based on capacitive EEG sensing, 
which is noise prone and suffers from micro-motion of elec-
trodes with respect to skin, compared to the traditional 
impedimetric contact-based EEG sensing approach. 

In this study, we propose BRAINsens (body-worn 
reconfigurable architecture of integrated network sensors) –a 
reconfigurable architecture for BSN where any sensor node 
can communicate in a modular fashion to the central node, 
leading to a lego-like paradigm which can be customized at 
the time of deployment. Among other physiological sensors, 
modularization of the EEG and ECG is more challenging 
because these low voltage signals are easily contaminated by 
the common-mode and power-line interference. So, we limit 
the scope of this study to investigate and implement EEG 
modularization. Compared to the aforementioned BSNs, the 
proposed BRAINsens has following unique features: 

1) EEG modularization: Elimination of DRL circuit from 
the conventional EEG system by designing a novel ana-
log front end, which thereby provides modularization in 
EEG sensing. 

2) Reconfigurability: All the sensors in the network are 
hardware-reconfigurable and Lego-like connectable 
which offers ease of deployment. 

3) Scalability: Hardware design for neurophysiological sen-
sors can be easily upgraded without the redesign of entire 
system network because each sensing node is indepen-
dent. The network can include physiological sensors like 
ECG, pulse oximeter, temperature, orientation sensors, 
etc. along with the EEG in the same topology. 

4) Distributed intelligence: The sensing nodes address the 
challenge of the data payload in the integrated sensing 
network by incorporating distributed intelligence. 

The following sections give details on the overall system 
architecture, hardware design, fabrication of EEG nodes, and 
communication protocol of the network. The results for the 
EEG system validation and comparison with other commer-
cial EEGs are also discussed. 

Overall system design 

BRAINsens offers a sensor-centric approach with Smart sens-
ing nodes (SSN) built with instrumentation hardware that can 
process data locally before sending it to the Command control 
node (CCN). The system is fully-adaptive irrespective of the 
type of SSN (EEG, ECG, temperature, etc.) in the network. 
All SSNs are connected with the CCN via a shared high-speed 
digital Inter-Integrated Circuit (I2C) bus [27]. The envisioned 
BRAINsens is reconfigurable at all abstraction levels, which 
includes deployment, BSN, and sensor level. 

The main reason of non-modularity of sensors in existing 
EEG is due to the use of driven-right-leg (DRL) circuit in the 
hardware design. The DRL circuit helps reduce common-
mode interference. But, it is designed on the basis of a fixed 
number of channels to be used in the system. Thus, it does not 
allow scalability at the time of deployment. In this study, how-
ever, we propose a novel analog front end (AFE) design for 
EEG which will not need DRL and thus sensor level 
modularization can be implemented. 

Hardware design of EEG SSN 

The hardware for the EEG SSN is designed to sense very 
low-voltage brain signals (10–200 microvolt range) from 
the scalp. Each EEG SSN has a single-channel, referential 
montage based AFE with a very low-noise INA-118 instru-
mentation amplifier (Texas Instruments, TX, USA) at the 
first stage of the signal conditioning circuit. This instrumen-
tation amplifier (inst-amp) offers a very high input imped-
ance (1010 Ω typical) to the two input channels, referred as 
Ch1 and reference, and amplifies the difference between 
these inputs with a gain of 26. In contrast, using DRL to 
reduce power-line interference in the circuit, we have 
employed a unity gain Twin-T active notch filter (fc = 
60 Hz) at the second stage. The noise suppression at the 
early stage of instrumentation circuit improves the noise 
figure of the overall circuit. We further limit the bandwidth 
of the circuit between fc = 0.16–47.5 Hz with the designed 
active band-pass filters that provide an overall mid-band 
gain of 55.2 dB. For more details on this BDRL-less^ AFE 
design, please refer to our previous studies in [28, 29]. For 
ECG sensing, a similar SSN node design can be used after 
modifying the gain and filter bandwidth. 

The supply voltage, Vdd (3.3 V) and the ground of the 
SSN node are routed through the CCN using a 6-pin rib-
bon cable (discussed in a later section). The analog signal 
is referenced to the mid-rail voltage (1.65 V) by creating a 
virtual ground supply on the node that consists of a 
voltage-divider followed by a unity gain buffer. We used 
AD8607 (Analog Devices Inc.,  MA, USA), a  dual-
channel rail-to-rail input and output, an operational am-
plifier in the AFE design because of its low noise (22 nV/ 
√Hz), very low input bias current (1pA max) and micro 
power consumption (50 μA max.).  

The analog brain signals are digitized on the SSN node 
using an ultra-low power 16-bit MSP430F5528 microcon-
troller (Texas Instruments, TX, USA) with its in-built 12-bit 
successive approximation register (SAR) ADC at 512 sps. 
Once triggered by the CCN, SSN continuously samples the 
signals and saves the results in a 1 KB buffer. The sampled 
data is sent upon request to the CCN through a digital I2C 
bus at the speed of 100 kbps. 
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Hardware design of CCN 

CCN has a TI MSP430F5659 microcontroller unit (MCU) con-
nected with its peripherals including Bluetooth module, LEDs, 
and I2C connectors. The 16-bit RISC architecture based MCU 
has 64 KB SRAM and 512 KB flash memory, sufficient to 
process multiple SSNs data. The CCN is connected with a 
3.3 V Li-poly battery that can be charged on the board through 
a charge management controller via micro-USB cable. 

We also used RN-42, a Class 2 wireless Bluetooth (BT) 
module (Roving Networks, CA) which has integrated folded 
PCB antenna for 2.4 GHz ISM band. This BT module (26 μA 
sleep, 3 mA connected, and 30 mA transmit) allows the 
UART communication in Serial Port Profile (SPP) mode. To 
reduce current consumption, MCU uses auxiliary system 
clock (ACLK) operating at 32.768 kHz for the timer (used 
for  1  s  delay) and a  high-frequency sub-main clock 
(SMCLK) at 1 MHz for the I2C and universal asynchronous 
receiver transmitter (UART) communication. 

The CCN uses a 6-pin I2C connector dedicated to each 
SSN in the prototype. The 4 pins of this connector constitute 
I2C bus – Vdd, GND, Serial data (SDA) and Serial clock 
(SCL), 5th pin is for the reference channel (shared among 
the network for EEG/ECG sensing), whereas 6th pin is not 
used. Figure 1 shows the functional block diagram for both 
EEG SSN and CCN. 

Hardware design of miscellaneous nodes 

In order to keep the body potential within the acceptable range 
of the AFE, a virtual ground potential (Vgnd = 1.65  V)  is  sep-
arately generated and applied through a Vgnd node. The circuit 
consists of a voltage divider followed by the high input im-
pedance buffer designed with an AD8607 operational ampli-
fier. The Vgnd potential is fed to the body by placing the Vgnd 

node on the mastoid of the subject for EEG sensing. For ECG 
and other physiological sensing, the location of Vgnd node can 
be changed to the right leg. To implement the referential mon-
tage of EEG, an independent node is designed to sense the 

reference channel signal. This node does not have any analog 
or digital circuit components instead, it has only an electrode 
connector that can be snapped to an EEG/ECG electrode. This 
sensed reference signal is communicated to other SSN nodes 
of the network through the I2C bus using reference channel 
wire within the I2C bus. For EEG sensing, the reference node 
is attached on the mastoid of the subject. 

We have designed 4-layer (top, Vdd, GND, bottom) printed 
circuit boards (PCB) for all prototype nodes using Allegro 
PCB designer (Cadence Design Systems, Inc., CA, USA), 
fabricated it through a commercial PCB foundry (OSH Park, 
OR, USA), and manually populated them in our lab. Figures 2 
and 3 represent the fully assembled EEG SSN, CCN, refer-
ence and Vgnd nodes of the BRAINsens system. 

I2C communication protocol 

To ensure connectivity of the sensors in a Lego-like fashion, 
we have used I2C protocol that allows a user to connect mul-
tiple SSNs on the same shared digital bus. Each SSN connect-
ed to the bus is software addressable by a unique address and 
connected to the bus with its SDA and SCL pulled up with 4.7 
kΩ resistors. We have used 7-bit addressing mode at a stan-
dard bus speed of 100 kbps, according to which the minimum 
value of pull-up resistor, Rp (min)  to be used is computed as:  

R p minð Þ ¼ 
Vdd−0:4V 

3mA 
¼ 

3:3−0:4V 
3mA 

¼ 9:66:6Ω ð1Þ 

According to the I2C bus specifications, the maximum bus 
capacitance, Cb should not exceed from 400 pF. The mea-
sured bus capacitance on SDA and SCL (including trace 
lengths) is found to be ~10 pF, which indicates that we 
can practically connect up to 39 SSNs in the network with 
the given design. However, more SSNs can be included in 
the architecture by using shorter cable length (to keep Cb 

< 10 pF) or by using bus buffers and switched pull-up 
circuits in the design that can cope with excess bus ca-
pacitance [27]. In comparison with the Serial Peripheral 
Interface (SPI) communication, I2C allows us to  add  

Fig. 1 The functional block diagram of different nodes of BRAINsens 
(Left) EEG SSN and (Right) CCN. The hardware for all the nodes is 
made up of surface mount commercial off-the-shelf (COTS) components. 

I2C bus is shared between various nodes of BRAINsens via a 6-pin 
connector on each node 
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multiple SSNs in the system without the need of addition-
al select line, thereby providing hardware modularity in 
the proposed system design while keeping the number of 
wire requirement to a minimum [30–32]. 

Reconfigurable software firmware 

The firmware of the MCU for SSN and CCN are devel-
oped with a TI Code Composer Studio (CCS) and pro-
grammed to the MCU with a Spy-Bi-wire JTAG program-
mer through in-circuit serial programming port. The CCN 
and SSN are employed in the single master-multislave 
configuration of I2C topology in the network. Each SSN 
is identified by its unique pre-defined address as per the 
7-bit I2C addressing protocol. In this study, the starting 
address of the SSN is 71 (0x41h). 

The SSN is the slave of the system that is driven by the 
SCL generated by the CCN. On the power reset, SSN 
remains in the idle mode unless it receives a Bgeneral 
call^ command on the I2C bus, in response to which the 
SSN starts sampling the signals. An in-built ADC12 of 
MCU is used for sampling (see Rx ISR of Fig. 4). The 
ADC12 uses a sampling timer mode to trigger the sam-
pling every 1.9 ms (desired for EEG sensing). In order to 
reduce the average current-consumption and increase the 
throughput of I2C module, a  Direct Memory Access 

(DMA) controller is used to move the ADC12 conversion re-
sults to one of the available Mutex-buffers (each of size 1 KB). 
Initially, the DMA controller saves the conversion results in 
buffer 1, if this buffer is full then it saves in buffer 2 and vice-
versa by checking the flags inside the DMA interrupt service 
routine (ISR). To avoid the buffer overflow in the network, the 
time required in filling the buffer,Tbuffer (~973 ms) follows the 
following constraint: 

Tbuffer ¼ 
Tsamp  Sbuffer 

SADC 
≥Ttrans ð2Þ 

where Ttrans is  the time required to transmit each buffer  data (~  
82 ms by the I2C bus),  Tsamp is the sampling time, Sbuffer is the 
size of the buffer and SADC is the size of digitized ADC data 
(number of samples) in bytes. 

In this study with three prototype EEG SSNs, data is 
requested by the  CCN  every 1  s that guarantees  the  time  
constraint mentioned in eq. 2. For every data request, SSN 
executes the Transmission ISR (see Tx ISR in Fig. 4) 
according to which if any of the buffers is full, then 
1 KB is transmitted over the I2C bus,  otherwise, SSN  
sends 0x33h (arbitrarily selected number) to indicate that 
none of the buffer is full and I2C bus is released. 

The CCN is the only master of the system and thus initi-
ates the network communication by generating SCL. On the 

Fig. 3 Photograph of fully 
assembled a CCN (1.96 × 1.33B), 
b Virtual ground node (diameter: 
0.95^) and (c) Reference node 
(diameter: 0.91″). Legends: (1) 
MCU (2) Charge management 
controller (3) Micro-USB port (4) 
I2C connectors (5) Voltage divider 
circuit for Vgnd (6) Electrode 
connector 

Fig. 2 Photograph of a fully 
assembled EEG SSN (diameter 
1.29″) for the BRAINsens 
system. a Top view of the 
hardware. b Bottom view of the 
hardware beside a quarter coin. 
Legends: (1) MCU (2) I2C con-
nectors (3) Spy-Bi-wire JTAG 
programming connector (4) EEG 
electrode connector (5) AFE 
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power reset, CCN identifies the total number of SSNs avail-
able in the network along with their corresponding ad-
dresses and sends this information to the Bluetooth module 
through UART at 115.2 kbps baud rate. The CCN then is-
sues a Bgeneral call^ command (0x55h, arbitrary selected) 
simultaneously to all the available SSNs to trigger sampling 
of the signals. The MCU of the CCN uses a 16-bit timer for 
1 s (can be modified) to trigger the general call periodically 
so as to keep all the SSNs synchronized. The CCN further 
aggregates data from the available SSNs in a round-robin 

topology and sends data to the UART for wireless transmis-
sion to a paired laptop/PC. 

CCN sends 1025 bytes of data to the UART, the first 
byte represents the SSN ID followed by 1024 bytes of 
the SSN data. Figure 5 represents the flowchart of the 
reconfigurable CCN firmware. The reconfiguration abil-
ity of the CCN allows it to dynamically allocate mem-
ory to save the SSN data if any new SSN is found in 
the network. In order to avoid data loss, the sampling 
time for the sensors should satisfy the constraint: 

Fig. 4 Flowchart for the SSN 
firmware with the main routine 
and interrupt service routines for 
DMA controller, I2C 
transmission, and I2C receive 
communication with the CCN 
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Tsamp ≥ ∑  
N 
Tframe ð3Þ 

where N is the number of homogeneous sensors and 
Tframe = (Tclkbus * x); x is number of bits in the data 
packet and Tclkbus is the clock period for I

2C bus.  

Methods for system evaluation 

The designed system with reconfiguration capability of EEG 
SSNs and CCN has been functionally verified both in the 
laboratory and naturalistic settings. This section describes 
methods used to evaluate the time-frequency response, noise 

Fig. 5 Flowchart for the CCN 
firmware depicting its data 
communication protocol with 
multiple SSNs in a round-robin 
topology. A Bgeneral call^ com-
mand to synchronize all the SSNs 
of the network is sent every 1 s 
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characteristics, power consumption of the nodes and signal 
processing techniques for comparison with commercial EEG 
systems. 

Bench test experiments 

The schematic of the AFE was simulated with OrCAD 
Capture CIS (Cadence Design Systems, CA, USA) simulation 
software for various amplitude and frequency ranges of the 
input sine-wave signal. 

Fidelity measurement 

Fidelity reflects the stability of the gain in a specific band-
width. The fidelity characteristics of the circuit were recorded 
in the simulation and were then compared with the actual 
measurements. For the measurement, the input channel, Ch1 
of one of the EEG SSN was connected to a sine input signal 
(Vin = 3  mVp-p, at different frequencies between 1 to 100 Hz) 
from a 2-channel signal generator (DG4062, RIGOL Tech., 
Beijing, China). The output measurements were recorded 
using a digital storage oscilloscope (DSO-X 2024 A, Agilent 
Tech., CA, USA) with respect to the Vgnd. 

Linearity measurement 

The linearity characteristic of the circuit represents the stabil-
ity of the gain with respect to different input voltages. 
Simulation results from the Cadence were saved in the *.csv 
file and later plotted in the MATLAB against the actual mea-
surement. To generate microvolt range signals (for direct com-
parison with EEG signals), a 20 dB attenuator was used at the 
output of the RIGOL signal generator. 

Common-mode rejection analysis 

In order to investigate the common-mode rejection ratio 
(CMRR) at 60 dB, common mode gain (Acm) and  differential  
mode gain (Adm) were calculated. To measure the common-
mode signal, the reference channel and Ch1 channel of the 
inst-amp were tied together and were driven with a 100 
mVp-p sine signal at 60 Hz from the signal generator. 
However, Adm at 60 Hz was measured by applying a differen-
tial mode sine input, Vdm = 3  mVp-p between Ch1 and Ref 
channels. CMRR of the circuit was then mathematically cal-
culated as: 

CMRR ¼ 20 log10 
Adm 

Acm 
dB ð4Þ 

All output measurements recorded with the oscilloscope 
were with respect to the Vgnd. 

Power management and consumption 

BRAINsens uses a Li-Poly battery (3.3 V, 800 mAh) as the 
power supply. The battery was connected with the CCN and 
can be charged using a 5-pin micro-USB cable through an on-
board linear charge management controller (MCP73831, 
Microchip Tech., AZ, USA) that avoids over-charging of the 
battery. The power supply to the SSN and other peripheral 
nodes in the network was supplied using the 6-pin ribbon 
cable. The hardware components were carefully selected to 
reduce the power consumption of the BRAINsens. The aver-
age current consumption was measured with the functional 
I2C and UART communication. 

In-vitro experiments 

Data acquisition with EEG SSN 

EEG SSNs along with the other peripherals were deployed on 
the subjects in real-life settings for continuous data collection. 
In this study, we attached the Vgnd and Ref nodes to the left and 
right mastoid of the subject, respectively. However, these lo-
cations for a different study can be changed without any con-
straint. Pre-gelled adhesive disposable sensors (GS26, Bio-
medical Instruments) were used with SSNs, which were 
snapped to one side of the SSN. To decrease the skin imped-
ance before data collection, the skin of the subjects was gently 
abraded with Nuprep gel (DO Weaver & Co., CO, USA). 
Once the SSNs and other nodes were deployed, data was 
collected in real-time by CCN via I2C protocol and sent to 
its serial port. The serial port was then read through the de-
signed Graphical User Interface (GUI) in the MATLAB 
(MathWorks, MA, USA) in the paired laptop/ PC. This GUI 
also checks if any packet is lost due to the Bluetooth commu-
nication and notifies the user by displaying BPacket Missed^ 
on the command window in MATLAB. 

Data acquisition with Neuroscan 

Neuroscan, a commercially available EEG system with wall-
powered, 64-channel SynAmps RT amplifiers (Compumedics 
Neuroscan Ltd.) was used to compare the simultaneously re-
corded brain signals with our EEG SSNs. The RT amplifier 
has a low-noise 24-bit ADC, high CMRR of 110 dB and input 
impedance >10 GΩ [33]. In this study, only two channels of 
the amplifier were used to compare with two EEG SSNs at 
AF3 and AF4 frontal lobe locations. Neuroscan uses Ag/AgCl 
disc electrodes (connected to the amplifier with 1 m cables). 
These electrodes were placed side-by-side (<1 cm) to the 
GS26 electrodes on the frontal and mastoid sites. The data 
was recorded from two subjects for multiple sessions in a 
magnetically shielded room for ~50 s at fs = 500 sps. The 
electrode impedance was maintained <5 kΩ throughout the 
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session. During the data collection, subjects did not perform 
any specific cognitive task rather they sat on a chair in the 
relaxed position. However, they were asked to blink when 
instructed (every five seconds). 

Data acquisition with Emotiv EPOC 

Another 14-channel commercial EEG device, EPOC (Emotiv, 
Eveleigh, NSW, Australia) was used to compare the brain 
activities [22]. EPOC was considered for the comparison be-
cause it’s specifications- such as battery-operation, referential 
montage based, wireless, low-cost EEG are very similar to the 
EEG SSN. EPOC has inbuilt analog filters with bandwidth 
0.2–45 Hz, digital notch filters at fc = 60 Hz to eliminate the 
power-line interference and 16-bit ADC to sample data at 128 

sps. EPOC headset uses wet electrodes soaked in a saline 
solution. As the bulky EPOC headset occupies most of space 
on the scalp, only one EEG SSN was deployed on the subject 
at AF4 location. The data acquisition was conducted in an 
office environment in the naturalistic settings for ~100 s. 

Data pre-processing and analysis 

For one-to-one comparison between systems, signals were 
pre-processed to keep the same bandwidth and sampling rate. 
For example, Neuroscan signals were up-sampled at 512 sps 
and digitally filtered at 0.16–47 Hz using the Curry 7 
Neuroimaging suite (Compumedics USA, Inc., NC, USA), 
whereas, EEG SSN signals were down sampled to 128 sps 
for the comparison with EPOC. Signals from both devices 

Table 1 BRAINsens’s 
Specifications with EEG SSN Parameter Notes 

Differential Amp. Gain = 26 

Low-pass filter 2rd order Butterworth, fc = 47.5  Hz,  Gain  = 1.61  

High-pass filter Passive filter at fc = 0.1 Hz, Gain = 0.83 

Notch filter Twin-T filter at fc = 60 Hz, Q = 0.1, Gain = 1 

Biasing Amp. Non-inverting amplifier, Gain = 17.5 

Range (input referred) 5500 μVp-p 

Coupling mode DC coupled 

Voltage Resolution 0.80 mV (1 LSB, input referred) 

Digital Input 12-bit 

Input-referred noise 0.82 μVrms 

Fidelity 54.95 dB 

Linearity 55.20 dB 

CMRR 70 dB at 60 Hz 

Signal to Noise ratio 126 dB 

Supply voltage 3.3 V provided by CCN 

Weight 6.43 g (SSN) [Other nodes- 11.94 g (CCN), 3.48 g (Ref) and 3.72 g (Vgnd)] 

Input Impedance 1010 Ω (typical for the differential mode) 

Communication range 10 m 

Fig. 6 Experiment and OrCAD simulation characteristic results for one of the EEG SSN a Fidelity and b Linearity, x-axis is in log scale. c Worst-case 
magnitude and phase response obtained with Monte Carlo simulation analysis 
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were further digitally low-pass filtered from 1 to 40 Hz and 
notch filtered at 60 Hz in MATLAB. 

To compare the systems, we computed wavelet coherence 
(WCO) between the signals to measure correlations in the 
time-frequency plane. WCO was computed with the wcoher 
function in MATLAB as: 

WCO 
S P* x a; bð ÞPy 

 
a; b 

    
  
2 

S Px a; bð Þj j 2 
  

S Py a; bð Þ   2   ð5Þ 

where, Px(a,b) and Py(a,b) are the continuous wavelet trans-
forms of signals x and y at scale a & position b, S is the 
smoothing operator in time & scale and superscript * is the 
complex conjugate. 

Results 

The time- and frequency-domain responses to the input sig-
nals for all EEG SSNs were functionally verified. Some of 
the observed technical specifications for the EEG SSN are 
tabulated in the Table 1. This study includes the results of 
only one randomly selected EEG SSN because the results 
were similar for the other SSNs. Figure 6 compares the 
experimental linearity and fidelity characteristics of the 
SSN. As observed in the Fig. 6a, there is a sharp attenuation 
at 60 Hz, which is due to the notch filter in the circuit. The 
measured average fidelity in the linear range was found to 
be ~54.95 dB. Whereas, the average measured linearity is 
observed to be 55.20 dB. The experimental values are 
slightly less than the theoretical simulation values, mainly 
because of the component tolerances and parasitic capaci-
tances on the PCB. Also, in Fig. 6b, at the lower input volt-
ages up to 400 μV, the measured linearity differs from the 
simulated curve, which might be due to the noise level of the 
oscilloscope. A Monte-Carlo analysis of the schematic was 

Fig. 7 CMRR measurement for an EEG SSN at 60 Hz (Top) Differential-
mode response to a representative 3 mVp-p test sine input applied between 
Ch1 and Ref channels of inst-amp. (Bottom) Common-mode response to 
a 100  mVp-p test sine input applied to Ch1 (with Ch1 and Ref channels 
shorted) 

Fig. 8 Measured EEG SSN input-referred noise. The output noise is 
divided by the total gain of the system 

Fig. 9 (Top) Implemented I2C protocol. (Below) Snapshot of the actual 
SCL and SDA signals of the I2C bus as measured with the oscilloscope. 
The Bgeneral call^ (GC) data 0x55h sent at address 0x00h along with 
SSN’s ADC data can be observed. The addition or removal of SSN in the 
network will reflect bit changes in SDA and SCL 

Fig. 10 Photograph of three prototype EEG SSN nodes deployed on a 
mannequin head. CCN is concealed inside the cap 
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also performed with Cadence by using the actual tolerances 
of resistors and capacitors. Figure 6c shows the worst-case 
magnitude and phase response of the circuit for 50 runs. 

As noted previously, the AFE of the EEG SSN does not 
have a DRL circuit, which is used in conventional EEG sys-
tems to reduce common-mode interference. Instead, we 
employed a high CMRR inst-amp followed by an active notch 
filter in the early stage of instrumentation circuit that mitigates 
the effect common-mode and power-line interference. To in-
vestigate the CMRR of the circuit specifically at 60 Hz, Adm 

and Acm were calculated at 60 Hz. The differential-mode out-
put, Vdm is ~ 570 mVp-p for 3 mVp-p input signal as shown in 
the Fig. 7 (top) which yields Adm = 190. Similarly, Acm is 
found to be close to 0.06 for the common-mode output, 
Vcm = 0.6  mVp-p. Further, using Eq. 4, the effective CMRR 
was found to be 70 dB. This CMRR should be good enough 
to suppress the power-line interference during the data acqui-
sition. The DC bias was removed from the common-mode and 

differential-mode output signals of the circuit for clarity in 
Fig. 7. The noise in the EEG SSN was also measured with 
the oscilloscope, with both Ch1 input and Ref channel tied to 
the mid-rail. The recorded output noise waveform was divided 
by the system gain (575.43) so as to generate an input-referred 
noise waveform. The root-mean-square (RMS) measure, Vrms 

of the recorded input-referred-noise was plotted in MATLAB 
as shown in Fig. 8. 

The I2C protocol of the network was also verified with 
bench tests. The measured rise time and fall time of the SDA 
and SCL was less than the maximum acceptable limits of 
1000 ns and 300 ns respectively, as per the I2C specifica-
tions [27]. Figure 9 depicts a section of the 1 KB data trans-
fer between the SSN and CCN as measured with the oscil-
loscope. The section also represents the Bgeneral call^ com-
mand of data 0x55h sent at a 0x00h address for all the SSNs 
in the network to start ADC sampling. This is followed by 
0x33h data from the SSN address 0x47h (71) indicating that 
the buffer of the SSN was not yet full to send the data. 
Empirical observations indicated that most of the power in 
the BRAINsens was consumed by the Bluetooth module 

α-waves 

Fig. 11 The power spectral density of a 50 s continuous recording session 
from a male subject from AF3 location. The subject was instructed to 
keep his eyes closed, followed by eyes open and then to walk in the lab-
settings 

Fig. 12 EEG signals recorded from the AF3 and AF4 locations from Neuroscan and BRAINsens’s EEG SSN from a subject for around 35 s. Seven eye-
blinks after every 5 s can be noticed. A rapid eye-movement by the subject can also be observed across all signals 

Fig. 13 Wavelet coherence measured between the signals of Neuroscan 
and BRAINsens EEG for the same data range as in Fig. 14. WCO  is  
normalized between 0 to 1 
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(3 mA connected and 30 mA in the transmit mode). The 
ultra-low power TI microcontroller on the nodes was con-
sidered to consume  up  to  295  μA in the  active mode at  
1 MHz. The average-current consumption was measured 
from the CCN and other peripherals by measuring the volt-
age drop (in the oscilloscope) across the 1.2 Ω resistor in 
series with the battery.CCN consumed an average current of 
3.41 mA when connected with no SSN, 5.83 mA when con-
nected with 1 SSN and 11.6 mA with 2 SSNs connected. 
Thus, with 2 SSNs, EEG data can be continuously recorded 
up to 69 h. (~ 3 days). 

Further, the bench-tested EEG SSNs were used to mea-
sure actual EEG signals from the frontal lobe location of two 
subjects. Figure 10 shows the way the network EEG SSN 
nodes are deployed on the subjects. One of the recordings 
from a male subject was conducted for 50 s with initial 20 s 
with his eyes closed, next 15 s with natural eye-movements 
and last 15 s while walking. The power spectral density 
(PSD) for 10 s duration for each activity is plotted in 
Fig. 11. Typical alpha-waves (10 Hz) were observed during 
the eyes closed condition. Also, power spectrum during 
walk session was relatively higher for frequencies above 
28 Hz compared with other two sessions, likely due to the 
frontalis and temporal muscle activity as mentioned in [34]. 

Furthermore, EEG SSNs were compared against commer-
cial systems. Figure 12 represents a representative time seg-
ment (arbitrarily chosen) from the SSN of BRAINsens and 
Neuroscan system. Eye-blinks are evident after every ~5 s as 
per the protocol. The signal patterns of the EEG SSN, as well 
as sensitivity to the eye-blinks, were found to be very similar 
to the Neuroscan for both subjects and channels. For quanti-
tative comparison, wavelet coherence was computed for both 
channels as shown in Fig. 13. The plot shows high correlation 
of around 0.9 between the signals especially in delta (1–4 Hz),  
theta (4–7 Hz),  alpha  (8–13 Hz) and beta (14–20 Hz) bands. 
These EEG bands are important to understanding EEG dy-
namics during working memory, attention-related processing, 
and other BCI applications [35]. Correlations were lower 
(~0.7) in the high beta (20–30 Hz) band, which may be due 
to different analog filtering specifications of these devices. 

The time-domain Emotiv signals against BRAINsens sig-
nal from a subject at the AF4 location are also plotted in 
Fig. 14. Similar to the Neuroscan system, BRAINsens is com-
parable to the known standard, Emotiv. To compare the power 

of the two signals at different frequencies, a min-max normal-
ized PSD estimate was computed using Welch’s method  (with  
hamming window of length 512 over FFT length of 1024) in 
MATLAB. Figure 15 shows the corresponding PSD stem 
plots indicating a good correlation between the signals for 
most of the frequencies. 

Discussion 

The structure of the BRAINsens allows the user to deploy 
SSNs on any location of the body, in comparison to most of 
the existing devices with fixed location of channels. The 
envisioned BRAINsens would have modular EEG and other 
physiological sensors in the same I2C topology. We limit the 
scope of this paper for the design and implementation of 
EEG modularization. However, a similar study based on 
monitoring heart rate variability (HRV) along with EEG 
has been conducted in our pilot studies [36]. Furthermore, 
our other studies have examined the implementation of 
hardware-efficient signal processing algorithms like ocular 
artifact removal [37], seizure prediction [38], feature extrac-
tion, etc. that can be implemented on the EEG SSNs and 
other SSNs which would be useful for many real-time BCI 
and classification applications. 

The existing systems allow full-configurability on the sensor-
hardware and BSN level as mentioned in Section BIntroduction^. 

Eye -blink Eye movement 

BRAINsens AF4 

Emotiv AF4 

Fig. 14 A section of the 
simultaneously recorded EEG 
signals from Emotiv and 
BRAINsens for 16 s from AF4 
location. Eye-blinks and other 
ocular artifacts can be noted 

Fig. 15 Normalized stem plot for the PSD of BRAINsens’s EEG SSN 
and Emotiv EPOC’s recorded data from AF4 location. Measured WCO is 
embedded in the plot depicting the strong correlation between the signals 
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But, the envisioned BRAINsens would allow reconfiguration on 
the deployment level as well so that the user can configure the 
sampling rate, ADC resolution, channel selection, etc. from a 
PDA. This parameter configuration would be crucial for the net-
works with high-density EEG to avoid network congestion and 
cope with data payload requirements. 

The power consumption of the wearable BSN is one of the 
major concerns especially when battery-powered sensors are 
used. In this study, we have used carefully selected compo-
nents with low power consumption. At present, system con-
sumes ~20 mW per SSN when connected with a 3.3 V Li-poly 
battery of 800 mAh. Therefore, a fully charged battery would 
allow continuous data collection up to six days with one EEG 
SSN. The power of the designed system will be further opti-
mized in the future work by using the sniff mode of the 
Bluetooth, ultra-low power modes of the microcontroller unit 
(e.g., LPM3/ LPM4) and dynamic frequency scaling tech-
niques [39]. 

Table 2 compares some of the features of the designed 
system with other similar systems reported in the literature. 
This study is the first to report sensor-level reconfigurability 
for impedimetric EEG sensing. Most of the existing systems 
use DRL and focus on designing a BSN with a dedicated 
number of channels. Modular and easily deployable EEG sys-
tems are critically important especially for patients with neu-
rological disorders (Alzheimer, Autism Spectrum Disorder, 
Post-Traumatic Stress Disorder, and Attention Deficit 
Hyperactivity Disorder), elderly vitality monitoring and emer-
gency care conditions. The proposed technology in this paper 
supports very low-cost patient-centric healthcare, and will 
demonstrate effectiveness and usability of a healthcare moni-
toring in natural environments. 

Conclusion 

We have demonstrated the design of a hardware reconfigurable 
smart EEG sensing node (SSN) for a scalable architecture, 
BRAINsens, a wearable body sensor network (BSN). The pro-
posed hardware resolves modularity in EEG and ECG systems, 
which is challenging mainly because of use of the DRL circuit. 
To address this concern, we have implemented a novel analog 
front-end design of the SSN, which achieves an input-referred 
noise of 0.82 μVrms, and CMRR up to 70 dB (at 60 Hz) without 
using DRL. The elimination of DRL allows flexibility to the 
user to connect multiple EEG sensing nodes in a modular fash-
ion. The designed single-channel EEG SSNs capture brain sig-
nals at a sampling rate of 512 sps and transmit them to a control 
node using a digital I 2C bus. For future applications, SSNs are 
equipped with microcontrollers to process the local information 
to combat the challenges of data payload requirement. The 
control node (CCN) of the network scans for the available 
SSNs in the network, allocates memory for them and Ta
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aggregates their data, which is then sent to a paired device via 
Bluetooth at 115.2 kbps baud rate. The CCN dynamically 
adapts to the change in system configuration (e.g., number of 
attached SSNs) without hardware re-design. At the I2C bus  
speed of 100  kbps, up to 39 EEG  SSNs can  be  connected to  
the network with each SSN consuming around 5 mA current, 
allowing continuous data collection for ~5 days by a 3 EEG 
SSN system with a 800 mAh Li-poly battery without 
recharging. The prototypes were functionally validated against 
two commercial EEG systems and the results suggest that the 
proposed system design can be deployed for comparable neu-
rological data collection in real-life-settings. This research 
paves the path for a fully reconfigurable architecture of integrat-
ed network sensors that can seamlessly incorporate any types of 
heterogeneous body-worn sensor nodes (wired or wireless, 
temperature, pulse oximeter, ECG, etc.) along with the EEG 
within the same network. 
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