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Abstract 
Objective. Categorical perception (CP) of audio is critical to understand how the human brain 
perceives speech sounds despite widespread variability in acoustic properties. Here, we investigated 
the spatiotemporal characteristics of auditory neural activity that reflects CP for speech 
(i.e. differentiates phonetic prototypes from ambiguous speech sounds). Approach. We recorded 
64-channel electroencephalograms as listeners rapidly classified vowel sounds along an 
acoustic-phonetic continuum. We used support vector machine classifiers and stability selection to 
determine when and where in the brain CP was best decoded across space and time via source-level 
analysis of the event-related potentials. Main results. We found that early (120 ms) whole-brain 
data decoded speech categories (i.e. prototypical vs. ambiguous tokens) with 95.16% accuracy 
(area under the curve 95.14%; F1-score 95.00%). Separate analyses on left hemisphere (LH) and 
right hemisphere (RH) responses showed that LH decoding was more accurate and earlier than RH 
(89.03% vs. 86.45% accuracy; 140 ms vs. 200 ms). Stability (feature) selection identified 13 regions 
of interest (ROIs) out of 68 brain regions [including auditory cortex, supramarginal gyrus, and 
inferior frontal gyrus (IFG)] that showed categorical representation during stimulus encoding 
(0–260 ms). In contrast, 15 ROIs (including fronto-parietal regions, IFG, motor cortex) were 
necessary to describe later decision stages (later 300–800 ms) of categorization but these areas were 
highly associated with the strength of listeners’ categorical hearing (i.e. slope of behavioral 
identification functions). Significance. Our data-driven multivariate models demonstrate that 
abstract categories emerge surprisingly early (∼120 ms) in the time course of speech processing 
and are dominated by engagement of a relatively compact fronto-temporal-parietal brain network. 

1. Introduction 

The human brain can map an incredibly large num-
ber of stimulus features into a smaller set of groups 
(Chang et al 2010, Holt and Lotto 2010), a pro-
cess known as categorical perception (CP). Categor-
ies allow listeners to extract, manipulate, and pre-
cisely respond to sounds (Miller et al 2002, 2003, 
Russ et al 2007, Miller and Cohen 2010, Tsunada and 
Cohen 2014) despite wide variability in their acoustic 
properties. CP emerges in early life (Eimas et al 1971) 
but is further modified by native language experience 

(Kuhl et al 1992, Xu et al 2006, Bidelman and Lee 
2015). As such, CP plays an important role in under-
standing receptive communication and the building 
blocks of speech perception and language processing 
across the lifespan. 

Some researchers have investigated the role of 
induced activity in various brain functions. For 
instance, magnetoencephalography (MEG) studies 
demonstrate that oscillatory brain activity differs in 
language vs. non-language stimuli (Eulitz et al 1996), 
suggesting the segmentation and coding of continu-
ous speech relies on cortical oscillations (Gross et al 
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2013). Other studies (Youssofzadeh et al 2020) 
showed beta power decrements within language pro-
cessing areas and dominance in left hemisphere (LH) 
during auditory task processing. Induced activity is 
releveant in speech categorization studies (Mahmud 
et al 2021). However, event-related potentials (ERPs) 
are particularly useful for examining the brain mech-
anisms of phoneme and speech perception (Celsis 
et al 1999, Molfese et al 2005) given their excel-
lent temporal resolution and the rapid time course 
required to process speech signals. Indeed, several 
neuroimaging studies have documented neural cor-
relates to CP via ERPs (Chang et al 2010, Bidelman 
2015, Shen and Froud 2019). In particular, several 
studies have shown the efficiency of listeners’ speech 
categorization varies in accordance with their under-
lying brain activity (Perlovsky 2011, Bidelman et al 
2013, Bidelman and Alain 2015, Bidelman and Lee 
2015). For example, Bidelman et al demonstrated that 
brain responses in the time frame of 180–320 ms were 
more robust for phonetic prototypes vs. ambiguous 
speech tokens, thereby reflecting category-level pro-
cessing (Bidelman et al 2020). Other studies have 
shown links between N1-P2 amplitudes of the aud-
itory cortical ERPs and the strength of listeners’ 
speech identification (Bidelman and Walker 2017) 
and labeling speeds (Al-Fahad et al 2020) in speech 
categorization tasks (Bidelman et al 2014, Bidelman 
and Alain 2015). These findings are consistent with 
the notion that the early N1 and P2 waves of the ERPs 
are highly sensitive to speech processing and audit-
ory object formation that is necessary to map sounds 
to meaning (Wood et al 1971, Alain 2007, Bidelman 
et al 2013). 

The neural organization of speech categories also 
varies spatially, recruiting a widely distributed system 
across a number of brain regions. Neural responses 
are elicited by prototypical speech sounds (i.e. those 
heard with a strong phonetic category) differen-
tially engage Heschl’s gyrus and inferior frontal gyrus 
(IFG) compared to ambiguous speech depending on 
a listeners perceptual skill level (Bidelman et al 2013, 
Bidelman and Lee 2015, Bidelman and Walker 2017, 
Mankel et al 2020). This suggests emergent categorical 
representations within the early auditory-linguistic 
pathways. Similarly, Alho et al found that category-
specific representations were activated in left IFG 
(Alho et al 2016) at an early-latency (115–140 ms). 
Collectively, in terms of the time course of processing, 
M/EEG (electroencephalogram) studies agree that 
the neural underpinnings of speech categories emerge 
within the first few hundred milliseconds after stim-
ulus onset and reflect abstract ‘category level-effects’ 
(Toscano et al 2018) and ‘phonemic categorization’ 
(Liebenthal et al 2010). 

Beyond conventional auditory-linguistic brain 
regions, neuroimaging also demonstrates a variety of 
additional areas important to speech perception and 

language processing (Novick et al 2010, Hickok et al 
2011, Lee et al 2012). Among them, superior parietal 
lobe is associated with writing (Menon and Desmond 
2001) and supramarginal gyrus with phonological 
processing (Deschamps et al 2014, Oberhuber et al 
2016) during speech and verbal working memory 
tasks. Relevant to CP, several studies have found that 
the left inferior parietal lobe is more activated dur-
ing auditory phoneme sound categorization (Husain 
et al 2006, Dufor et al 2007, Desai et al 2008). Indeed, 
auditory categorical processing has been shown to 
recruit superior temporal gyrus/sulcus, middle tem-
poral gyrus, premotor cortex, inferior parietal cor-
tex, planum temporal, and IFG (Guenther et al 2004, 
Bidelman and Walker 2019). Some other neuroima-
ging and electrocorticography studies have however 
shown that rostral anterior cingulate cortex is asso-
ciated with speech control (Paus et al 1993, Sahin 
et al 2009, Tankus et al 2012) and the orbitofrontal 
cortex in speech comprehension (Sabri et al 2008). 
Under some circumstances (e.g. highly skilled listen-
ers), speech categories can even emerge as early as 
auditory cortex (Chang et al 2010, Bidelman and Lee 
2015, Bidelman and Walker 2019). 

While category representations seem to emerge 
early in the time course of speech perception, the 
task of categorizing sounds can be further separated 
into pre- and post-perceptual stages of processing 
(i.e. stimulus encoding vs. decision mechanisms). 
‘Early’ vs. ‘late’ stage models of category formation 
have long been discussed in the literature (Fox 1984, 
McClelland and Elman 1986, Norris et al 2000, Noe 
and Fischer-Baum 2020). However, few empirical 
studies have actually separately examined encoding 
and decision stages of CP. The human brain encodes 
speech stimuli within ∼250 ms after stimulus onset 
(Masmoudi et al 2012) and decodes ∼300 ms after 
stimulus onset (Domenech and Dreher 2010, Mostert 
et al 2015). Previous studies have largely focused on 
these specific time windows (e.g. ERP waves) and 
brain regions when attempting to describe the neural 
basis of CP. While informative, such hypothesis-
based testing can be restrictive and potentially miss 
the broader and distributed networks associated with 
speech-language processing that unfold on different 
time scales (Rauschecker and Scott 2009, Du et al 
2016). 

In this regard, machine learning (ML) techniques 
are increasingly used to ‘decode’ high dimensional 
neuroimaging data and better understand different 
states of brain functionality as measured via EEG. 
ML is a branch of artificial intelligence that ‘learns 
a model’ from the past data to predict future data 
(Cruz and Wishart 2006). Moreover, data mining 
approaches in ML identify important properties in 
neural activity with high accuracy without interven-
tion from human observers. It would be meaning-
ful if brain functioning that has been linked with 
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speech processing (e.g. CP) could be decoded from 
neural data without, or at least with minimal, a priori 
assumptions on when and where those represent-
ation emerge. Indeed, laying the groundwork for 
the present work, we have recently shown that the 
speed of listeners’ identification in speech categoriz-
ation tasks can be directly decoded from their full-
brain EEGs using an entirely data-drive approach 
(Al-Fahad et al 2020). We have also shown that ML 
can decode age-related changes in speech processing 
that occur in older adults (Mahmud et al 2020). 

Departing from previous hypothesis-driven stud-
ies (Bidelman and Alain 2015, Bidelman and Walker 
2017, 2019), the current work used a comprehensive, 
data-driven approach to examine the neural mech-
anisms of speech categorization during encoding and 
decision stages of processing using whole-brain, elec-
trophysiological data. We analyzed speech-evoked 
ERPs from 64-channel EEG recorded during a rapid 
speech categorization task in young, normal hear-
ing listeners. Our approach applied state-of-the-art 
ML techniques including neural classifiers and feature 
selection methods (i.e. stability selection) to source-
level ERPs to investigate the spatiotemporal dynam-
ics of speech categorization. We aimed to determine 
when and where neural activity from full-brain EEGs 
differentiated phonetic from phonetically ambiguous 
speech sounds, and thus showed the strongest evid-
ence of categorical processing using an entirely data-
driven, ML approach. 

2. Materials and methods 

2.1. Participants 
Forty-nine young adults (male: 15, female: 34; aged 
18–33 years) were recruited as participants from the 
University of Memphis student body to participate 
into our ongoing studies on the neural basis of speech 
perception and auditory categorization (Bidelman 
and Walker 2017, Bidelman et al 2020, Mankel et al 
2020). All participants had normal hearing sensitivity 
[i.e. <25 dB hearing level between 500 and 2000 Hz]. 
All but one listener was right handed according to 
their Edinburgh Handedness scores (Oldfield 1971) 
and had achieved a collegiate level of education. None 
reported any history of neurological disease. All par-
ticipants were paid for their time and gave informed 
written consent in accordance with the declaration of 
Helsinki and a protocol approved by the Institutional 
Review Board at the University of Memphis. 

2.2. Stimuli and task 
We used a synthetic five-step vowel token continuum 
to assess the most discriminating spatiotemporal fea-
tures while categorizing prototypical vowel speech 
from ambiguous speech (Bidelman et al 2013, 2014). 
Speech spectrograms are represented in figure 1(A). 
Each token of the continuum was separated by 

equidistant steps acoustically based on the first form-
ant frequency (F1) and perceived categorically from 
/u/ to /a/. Each speech token was 100 ms, includ-
ing 10 ms rise/fall to minimize the spectral splat-
ter in the stimuli. Each speech token contained an 
identical voice fundamental frequency (F0), second 
(F2), and third formant (F3) frequencies (F0: 150 Hz, 
F2: 1090 Hz, and F3: 2350 Hz). To create a phon-
etic continuum that varied in percept from /u/ to /a/, 
F1 frequency was parameterized over five equal steps 
from 430 Hz to 730 Hz (Bidelman et al 2013). 

Stimuli were presented binaurally at an intens-
ity of 83 dB sound pressure level through insert 
earphones (ER 2; Etymotic Research). Participants 
heard each token 150–200 times presented in random 
order. They were asked to label each sound in a bin-
ary identification task (‘/u/’ or ‘/a/’) as fast and accur-
ately as possible. Their response and reaction time 
were logged. The interstimulus interval was jittered 
randomly between 400 and 600 ms (20 ms step and 
rectangular distribution) following listeners’ behavi-
oral response to avoid anticipating the next trial (Luck 
2005). 

2.3. EEG recordings and data pre-procedures 
During the behavioral task, EEG was recorded from 
64 channels at standard 10-10 electrode locations 
on the scalp (Oostenveld and Praamstra 2001). 
Continuous EEGs were digitized using Neuroscan 
SynAmps RT amplifiers at a sampling rate of 500 Hz. 
Subsequent preprocessing was conducted in the 
Curry 7 neuroimaging software suite, and customized 
routines coded in MATLAB. Ocular artifacts (e.g. eye-
blinks) were corrected in the continuous EEG using 
principal component analysis (Picton et al 2000) and 
then filtered (1–100 Hz bandpass; notched filtered 
60 Hz). Cleaned EEGs were then epoched into single 
trials (−200–800 ms, where t = 0 was stimulus onset). 

2.4. EEG source localization 
To disentangle the sources of CP-related EEG activ-
ity, we reconstructed the scalp-recorded responses 
by performing a distributed source analysis in the 
Brainstorm software package (Tadel et al 2011). All 
analyses were performed on single-trial data5 . We 
used a realistic boundary element head model (BEM) 
volume conductor and standard low-resolution 
brain electromagnetic tomography (sLORETA) as 

5 A limitation of this work was that we conducted source local-
ization on single trials which adds noise to the data. Single trial 
responses were however necessary for bootstrapping and feature 
selection. Additionally, the use of template (rather than individual) 
MRI anatomies likely also reduces the precision of source localiz-
ation and thus underestimates the true source foci. However, this 
source of ‘noise’ is the same for all subjects, trials, and tokens so 
it does not affect our stimulus decoding results. Moreover, any 
additional noise due to our source localization approach is prob-
ably negligible because stability selection works well even when the 
noise level of data is unknown. 
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Figure 1. Speech stimuli and behavioral results. (A) Acoustic spectrograms of the speech continuum from /u/ to /a/. 
(B) Behavioral slope. (C) Psychometric functions showing % ‘a’ identification of each token. Listeners’ perception abruptly shifts 
near the continuum midpoint, reflecting a flip in perceived phonetic category (i.e. ‘u’ to ‘a’). (D) Reaction time (RT) for 
identifying each token. RTs are fastest for category prototypes (i.e. Tk1/5) and slow when classifying ambiguous tokens at the 
continuum midpoint (i.e. Tk3). Silver color dots represent individual participants’ data. Errorbars = ±1 s.e.m. 

Figure 2. Grand averaged butterfly plots of scalp ERPs (64 channels) to prototypical (A); Tk1/5) vs. category-ambiguous (B); 
Tk3) vowels. Vertical lines demarcate segments for the stimulus encoding (0–260 ms) and decision period (300 ms–800 ms) 
analysis windows. t = 0 marks stimulus onset. (C) Topographic maps for encoding (left) and decision (right) periods. 
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the inverse solution within Brainstorm (Tadel et al 
2011). A BEM model has less spatial errors than other 
existing head models (e.g. concentric spherical head 
model). We used Brainstorm’s default parameter set-
tings [signal to noise ratio (SNR) = 3.00, regular-
ization noise covariance = 0.1]. From each single-
trial sLORETA volume, we extracted the time-courses 
within 68 functional regions of interest (ROIs) across 
the LH and right hemisphere (RH) defined by the 
Desikan-Killiany (DK) atlas (Desikan et al 2006) (LH: 
34 ROIs and RH: 34 ROIs). Single-trial data were then 
baseline corrected to the epoch’s pre-stimulus interval 
(−200–0 ms). 

To evaluate whether ERPs showed category-
related effects, we averaged response amplitudes to 
tokens at the endpoints of the continuum and com-
pared this combination to the ambiguous token at its 
midpoint (e.g. Liebenthal et al 2010, Bidelman 2015, 
Bidelman and Walker 2017, 2019). This contrast 
[i.e. mean (Tk1, Tk5) vs. Tk3] allowed us to assess the 
degree to which neural responses reflected ‘category 
level-effects’ (Toscano et al 2018) or ‘phonemic cat-
egorization’ (Liebenthal et al 2010). The rationale for 
this analysis is that it effectively minimizes stimulus-
related differences in the ERPs, thereby isolating cat-
egorical/perceptual processing. For example, Tk1 and 
Tk5 are expected to produce distinct ERPs due to exo-
genous acoustic processing alone. However, compar-
ing the average of these responses (i.e. mean [Tk1, 
Tk5]) to that of Tk3 allowed us to better isolate ERP 
modulations related to the process of categorization 
(Liebenthal et al 2010, Bidelman and Walker 2017, 
2019). To ensure an equal number of trials and SNR 
for prototypical and ambiguous stimuli, we con-
sidered only 50% of the data from the merged (Tk1/5) 
samples6 . 

2.5. Feature extraction 
Previous computational studies have found that ERPs 
averaged over 100 trials provided the best classific-
ation of data while maintaining reasonable signal 
SNR and computational efficiency (Al-Fahad et al 

6 Our main analyses focused on decoding speech sounds with 
a clear category (i.e. Tk1 and Tk5) from those which are cat-
egory ambiguous (Tk3). An interesting question is whether Tk 3 
is ambiguous or rather a bistable percept (cf Bidelman et al 2013). 
In attempts to address this question, we analyzed Tk 3 trials split 
based on listeners’ perceptual response [i.e. Tk3(u) and Tk3(a)]. 
Following our main analyses using a sliding window SVM classi-
fier (e.g. figure 2), we attempted to decode the two percepts induced 
by the otherwise identical stimulus [e.g. Tk3(u) vs. Tk3(a)]. Max-
imum decoding of Tk3(u) vs. Tk3(a) was only 64.28%, 63.96%, 
and 62.98% using whole-brain, LH, and RH source ERPs, respect-
ively (data not shown). Decoding accuracy was equally poor using 
the entire epoch window with only 62.06% (whole brain), 60.01% 
(LH), and 59.41% (RH) accuracy, respectively. Thus, performance 
was essentially at a random chance when decoding the perceptual 
state via source ERPs. Chance-level performance implies Tk 3 stim-
uli sounded neither like an /u/ or /a/. It further suggests our main 
Tk1/5 vs. Tk3 contrast is likely decoding category from category-
ambiguous speech activity rather than bistable percepts, per se. 

2020, Mahmud et al 2020). We quantified source-level 
ERPs with a mean bootstrapping approach (James 
et al 2013) by randomly averaging over 100 trials 
(with replacement) 30 times (Al-Fahad et al 2020) 
for each stimulus condition per participant. For each 
resample and ROI time course, we measured the 
mean amplitude within a 20 ms sliding window 
(without overlapping) in the post-stimulus interval 
(i.e. 0–800 ms). In post hoc analysis, we parsed the 
epoch into ‘encoding’ (0–260 ms) and ‘decoding/ 
decision process’ intervals7 (>300 ms) to investigate 
neural decoding related to pre- and post-perceptual 
processing, respectively. The sliding window resulted 
in 40 (800 ms/20 ms) ERP features (i.e. mean amp-
litude per window) for each ROI waveform, yielding a 
total of 68 × 40 = 2720 features per token (e.g. Tk1/5 
vs. Tk3) from each listeners’ data. Thus, the encod-
ing and decision windows contained 13 × 68 = 884 
(encoding) and 25 × 68 = 1700 (decision) ERP fea-
tures. ERPs features were then used as input to an 
support vector machine (SVM) classifier to access the 
temporal dynamics of the data and determine when 
in time CP was decodable from brain activity. State-
of-the art variable selection (stability selection; see 
section 2.7) (Meinshausen and Bühlmann 2010) was 
then applied for identifying where in the brain (e.g. 
which ROIs) were involved in encoding and decision 
processes with regard to the categorization of speech. 
Before submitting to the SVM classifier, the data were 
z-score normalized to ensure all features were on a 
common scale range (Casale et al 2008). 

2.6. SVM classification to identify temporal 
dynamics of CP 
Parameter optimized SVM classifiers provide better 
performance with small sample sizes data which is 
common in human neuroimaging studies. Classifier 
performance is greatly affected by tunable paramet-
ers in the SVM model (e.g. kernel, C, γ)8 (Hsu et al 
2003). To avoid bias in parameter selection, we used 

7 There is no clear division between ‘encoding’ and ‘decision/post-
processing’ stages of perceptual chronometry. The choice of the 
∼300 ms mark was motivated by our previous demonstrating cat-
egorical coding within the time-frame of the N1-P2 waves of the 
ERP (< 250 ms) (Bidelman et al 2013). We chose to include a sub-
sequent time buffer between the two intervals so as to minimize 
overlap and therefore what we were decoding in each segment. 
8 Parameters γ and C in the SVM used in this study gives a 
measure of the influence of training data points on decision 
boundary and a measure of miss-classification tolerance. The 
first parameter γ comes from the radial basis function kernel 

(e.g. K(x,x ′ ) = exp 

( 

− 
||x−x ′ ||2 

2σ2

) 

or equivalently K(x,x ′ ) = 

exp 
( 
−γ||x − x ′ || 2

) 
with a parameter γ) where γ = 1 

2σ2 . In this 
study, the radial basis kernel is used as a transformation function. 
A larger value of γ implies smaller σ, which means that the classi-
fier takes into account the effect of samples closer to the decision 
boundary. On the other hand, smaller γ means that the classifier 
considers the effect of samples farther from the decision bound-
ary. The C is a parameter of SVM that acts as regularization. It 
provides the classifier a trade-off between the margin of decision 
boundary and miss- classification. A larger value of C produces 
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a grid search approach during the training phase to 
find optimal kernel, C, and γ values. We randomly 
split the data into training (80%) and test (20%) sets 
(Park et al 2011). During the training phase (e.g. 
using 80% data), we fine-tuned the C, and γ para-
meters using grid search to find the optimal val-
ues such that the resulting classifier accurately dis-
tinguished prototypical vs. ambiguous speech in the 
test data that models never seen. The grid search pro-
cess was conducted with five-fold cross validation, 
kernels = ‘RBF’, fine-tune 20 different values of (C 
and γ) in the following range C = [1e−2–1e3], and 
γ = [1e−4–1e2] (Mahmud et al 2020). The SVM 
learned the support vectors from the training data 
that comprised the attributes (e.g. ERP features) and 
class labels (e.g. Tk1/5 vs. Tk3). Then we selected 
the best model that has maximum margin with the 
optimal value of C and γ for predicting the unseen 
test data (only by providing the attributes but no 
class labels). The classification performance metrics 
(accuracy, F1-score, precision, and recall) are calcu-
lated from standard formulas (Saito and Rehmsmeier 
2015). 

2.7. Stability selection to identify spatial dynamics 
of CP 
Our data included a large number (∼2700) of ERP 
measurements for each stimulus condition of interest 
(e.g. Tk1/5 vs. Tk3). Larger numbers of variable/ 
features can lead to overfitting and weak generaliza-
tion in classification problems since the majority of 
features from brain activity (i.e. different ROIs, time 
segments) do not provide discriminative power for 
decoding CP. Consequently, we aimed to select a lim-
ited set of the most salient discriminating features. 
Stability selection is a feature selection method that 
works well in high dimensional or sparse data based 
on the Lasso (least absolute shrinkage and selection 
operator) (Meinshausen and Bühlmann 2010, Yin 
et al 2017). Over a range of model parameters, sta-
bility selection can identify the most stable (relevant) 
features out of a large number of features. 

In stability selection, a feature is considered 
to be more invariants/relevant if it is more fre-
quently selected over repeated subsampling of the 
data (Nogueira et al 2017). To optimize the model 
error, the Randomized Lasso randomly subsamples 
the training data and fits an L1 penalized logistic 
regression. Over many iterations, feature scores are 
(re)calculated. The features are shrunk to zero by 
multiplying the features’ co-efficient by zero while the 
stability score is lower. Remaining non-zero features 

a narrower (smaller-margin) hyperplane if that obtains less or no 
miss-classification. Whereas the smaller value of C allows drawing 
a wider (bigger-margin) hyperplane even if there are some miss-
classifications. The optimal value of γ and C depends on data which 
is why we used a grid search to tune these parameters in our classi-
fication model. 

are considered important variables for classification. 
Detailed interpretation and mathematical equations 
of stability selection are explained in Meinshausen 
and Bühlmann (2010). Stability selection is extremely 
general and widely used in high dimensional data 
even when the noise level is unknown (Meinshausen 
and Bühlmann 2010). 

In our implementation of stability selec-
tion, we used a sample fraction = 0.75, number 
of resamples = 1000, and tolerance = 0.01 
(Meinshausen and Bühlmann 2010). In the Lasso 
algorithm, the feature scores were scaled between 0 
and 1, where 0 is the minimum score (i.e. irrelev-
ant feature) and 1 is the maximum score (i.e. most 
salient or stable feature). We estimated the regulariz-
ation parameter from the data using the least angle 
regression algorithm (Efron et al 2004, Friedman 
et al 2010). Over 1000 iterations, Randomized Lasso 
provided the overall feature scores (0 ∼ 1) based 
on the number of times a variable was selected. We 
ranked stability scores to identify the most important, 
consistent, stable, and invariant features that could 
decode speech categories via the EEG (i.e. correctly 
classify Tk1/5 vs. Tk3). We used these ranked features 
and corresponding class labels to an SVM classifier 
with different stability thresholds and observed the 
model performance. We fine-tuned the hyperpara-
meters of SVM classifier using grid search corres-
ponding to different stability thresholds. 

3. Results 

3.1. Behavioral results 
Behavioral identification (%) functions and reac-
tion time (ms) for speech categorization are depic-
ted in figures 1(C) and (D), respectively. Listeners 
responses abruptly shifted in speech identity (/u/ vs. 
/a/) near the midpoint of the continuum, reflecting a 
change in perceived category. The behavioral speed of 
speech labeling [e.g. reaction time (RT)] were com-
puted listeners’ median response latency for a given 
condition across the all trials. RTs outside of 250– 
2500 ms were deemed outliers and excluded from 
further analysis (Bidelman et al 2013, Bidelman and 
Walker 2017). Listeners spent more time classifying 
the ambiguous (Tk3) than prototypical speech tokens 
(e.g. Tk1/5), further confirming categorical hearing 
(Pisoni and Tash 1974). For each continuum, the 
identification scores were fit with a two parameters 
sigmoid function; P = 1

[1+e−β1(x−β0) ]
, where P is the 

proportion of the trial identification as a function of 
a given vowel, x is the step number along the stimu-
lus continuum, and β0 and β1 the location and slope 
of the logistic fit estimated using the nonlinear least-
squares regression (Bidelman et al 2014, Bidelman 
and Walker 2017). The slopes of listeners’ sigmoidal 
psychometric function, reflecting the strength of their 
CP, is presented in figure 1(B). 
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Table 1. Performance metrics of the SVM classifier corresponding 
to maximal decoding of prototypical vs. ambiguous vowels from 
ERPs. 

Metric (%) 
Whole-brain 
features LH features RH features 

Accuracy 95.16 89.03 86.45 
AUC 95.14 89.18 86.45 
F1-score 95.00 89.00 86.00 
Precision 95.00 89.00 87.00 
Recall 95.00 89.00 86.00 

Figure 3. SVM classifier accuracy decoding speech 
categories from source ERPs. Decoding using whole-brain 
vs. hemispheres-specific data (LH and RH) across the 
epoch window. Maximum classification accuracies are 
marked by circles. Maximum classifier accuracy was 
observed at ∼120 ms suggesting category representations 
emerge early, ∼200 ms before listeners’ behavioral 
categorization decisions (cf figure 1(C)). 

3.2. Decoding the time-course of speech 
categorization from ERPs 
We first examined how well categorical speech 
information could be decoded from whole-brain and 
individual hemisphere (e.g. LH and RH) ERPs data. 
During pilot modeling, we carried the grid search 
approach (mentioned in method). The optimal val-
ues of C and γ parameters corresponding to the 
maximum speech decoding reported in table 1 were: 
[C = 10, γ = 0.05 for whole-brain data; C = 20, 
γ = 0.01 for LH data; C = 20, γ = 0.01 for RH 
data]. We then selected the best model and predicted 
the class labels (e.g. Tk1/5 vs. Tk3) by feeding the 
feature vectors only from the unseen test data. The 
performance metrics were calculated from predicted 
class labels and true class labels. Time-varying accur-
acy of the SVM classifier (i.e. distinguishing Tk1/5 vs. 
Tk3 responses) is shown in figure 3. 

Decoding was generally at chance level (54%) at 
stimulus onset (i.e. t = 0) but increased rapidly to 
a maximum accuracy of 95.16% by 120 ms (marked 
as circles in figure 3). The individual hemispheres 
alone were less accurate and decoded speech categor-
ies later in time compared to whole-brain data (LH: 
89.03% at 140 ms; RH: 86.45% at 200 ms) (marked 
as circles in figure 3). Other important performance 

metrics of the SVMs at maximum decoding are repor-
ted in table 1. Collectively, the earlier and improved 
ability of LH compared to RH in decoding phon-
etic categories is consistent with an LH bias in 
speech and language processing (Hickok and Poep-
pel 2000). More critically, the early time course of 
decoding (120–150 ms) confirms that category level 
information, an abstract code, emerges very early in 
the neural chronometry of speech processing and well 
before listeners’ execute their behavioral decision (cf 
reaction times in figure 1(D)) (Bidelman et al 2013, 
Alho et al 2016, De Taillez et al 2020). 

3.3. Decoding the spatial regions underlying 
categorization: stimulus encoding vs. decision 
We used stability selection to find the most crit-
ical brain ROIs that were associated with categor-
ical organization in the encoding (pre-perceptual) vs. 
decision (post-perceptual) periods of the task struc-
ture (see figure 2). ERP features were considered 
stable (relevant) if they yielded a decoding accuracy 
performance >80%. The effect of stability threshold 
selection in the encoding and decision windows is 
illustrated in figure 4. Each bin of histogram demon-
strates the number of features in a range of stabil-
ity threshold. The x-axis has four labels. The first 
line represents the stability score (0–1); the second 
and third line show the number of features and per-
centage of the selected features in the correspond-
ing bin; line four represents the cumulative unique 
ROIs up to the lower boundary of the bin. The solid 
black semi bell-shaped curves of figure 4 repres-
ent classification accuracy for the different stability 
thresholds. In this analysis, the number of unique 
brain ROIs represents distinct functional brain ROIs 
of the DK atlas and the number of features repres-
ents different time windows extracted from source 
ERPs. Features selected at each stability threshold 
were then submitted to an SVM classifier separ-
ately for the stimulus encoding and response decision 
periods. 

During stimulus encoding (0–260 ms), 75% of 
features yielded stability scores 0–0.1. Thus, the 
majority of spatiotemporal ERP features were selected 
less than 10% out of 1000 model iterations and there-
fore carry weak importance in terms of describing 
categorical speech processing during stimulus encod-
ing. In contrast, at a more conservative stability score 
of 0.3, 102 (11%) out of 884 ERP features selected 
from 52 ROIs were able to encode prototypical from 
ambiguous speech at near-ceiling accuracy (95.8%). 
Accuracy decreased precipitously with higher (more 
conservative) stability thresholds resulting in fewer 
(though more informative) brain ROIs describing 
category processing. For example, a stability score 
of 0.6—selecting only the most behaviorally-relevant 
features—still encoded speech categories well above 
chance (66.8%) with only five features from five ROIs. 
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Figure 4. Effect of stability score threshold on model performance during (A) encoding and (B) decision period of the CP task. 
The bottom of the x-axis has four labels; Stability score represents the stability score range of each bin (scores: 0 ∼ 1); Number of 
features, number of features under each bin; % features, the corresponding percentage of selected features; ROIs, number of 
cumulative unique brain regions up to the lower boundary of the bin. 

At stability score 0.5, speech encoding accuracy 82.6% 
only using 15 features from 13 unique ROIs. A BrainO 
visualization (Moinuddin et al 2019) of relevant ROIs 
for the encoding and decision period (threshold sta-
bility score ⩾ 0.5) are shown in figures 5 and 6 with 
additional details in table 2. 

During the decision period following stimulus 
encoding (>300 ms), corresponding to the stability 
score 0.4, only 92 (5%) out of 1700 ERP features were 
selected, and the classifier showed decoding accuracy 
of 93.5% (area under the curve 93.6%). At a stabil-
ity score 0.5 (corresponding to 83.2% accuracy), only 
21 (1%) out 1700 ERP features from 15 unique ROIs 
were needed to describe categorical processing. 

3.4. Brain-behavior correspondences 
Multivariate regression analysis is widely used to 
investigate when more than one predictor simultan-
eously influences an outcome variable (Hanley 1983, 
Royston and Sauerbrei 2008). To evaluate the behavi-
oral relevance of the brain regions identified via sta-
bility selection, we conducted multivariate regression 
using weighted least squares (WLS) regression (Rup-
pert and Wand 1994). Regressions were computed 
between the 15 ROI ERPs identified in the decision 
interval and listeners’ behavioral slopes (figure 1(B)), 
which indexes their degree of categorical hearing. We 
computed the mean neural response (i.e. ERP) within 
each selected region across the stimuli [mean ERP 
of (Tk1/5 and Tk3)] and then regressed the 15 ROI 
responses simultaneously against listeners’ behavi-
oral slope. The inverse of the absolute error values 
of the ordinary least squares were used as weights 

in the WLS to reduce the effect of heteroscedasticity 
(Seabold and Perktold 2010, Weighted Regression in 
SAS, R, and Python). The multivariate model robustly 
predicted listeners’ behavioral CP from neural data 
(R2 = 0.85, p < 0.00001; table 3), demonstrating 
the selected 15 ROIs identified via ML (i.e. stability 
selection) carried behaviorally relevant information 
regarding CP. 

4. Discussion 

We conducted ML analyses on EEG to examine the 
spatiotemporal dynamics of speech processing dur-
ing rapid speech sound categorization. We found 
that speech categories are best decoded via patterned 
neural activity occurring within 120 ms and no later 
than 200 ms. We also identified the most relev-
ant brain regions that are involved in encoding and 
decision stages of categorization. Our findings show 
a small set of brain areas (15 ROIs) robustly predicts 
listeners’ categorical decisions, accounting for 85.0% 
of the variance in behavior. 

4.1. Speech categories are decoded early (<150 ms) 
in the time course of perception 
We replicate and extend previous work by using 
whole-brain EEG and SVM neural classifiers to exam-
ine the time-course and hemispheric asymmetry as 
the brain decodes the identity of speech sounds. We 
found optimal speech decoding in the time frame of 
the N1 wave (120 ms) of the auditory ERPs using full-
brain data. Analysis by hemisphere further showed 
that LH yielded better and earlier decoding than the 
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Figure 5. Stable (most consistent) neural network during the encoding period of CP. Visualization of brain ROIs corresponding to 
⩾0.50 stability threshold (13 top selected ROIs which show categorical organization (e.g. Tk1/5 ̸= Tk3) at 82.6%. (A) LH, 
(B) RH, (C) posterior view and (D) anterior view. Color legend demarcations show high (pink), moderate (blue), and low (white) 
stability scores. l/r = left/right; SUPRA, supramarginal; CAC, caudal anterior cingulate; IP, inferior parietal; POB, pars orbitalis; 
TRANS, transverse temporal; SF, superior frontal; POP, pars opercularis; LOF, lateral orbitofrontal; PT, pars triangularis; SP, 
superior parietal; CMF, caudal middle frontal; FUS, fusiform. 

Figure 6. Stable (most consistent) neural network during the decision period of CP. Visualization of brain ROIs corresponding to 
⩾0.50 stability threshold (15 top selected ROIs which decode Tk1/5 from Tk3 at 83.2%. Otherwise as in figure 5. SP, superior 
parietal; INS, insula; POP, pars opercularis; SF, superior frontal; CMF, caudal middle frontal; IST, isthmus cingulate; PT, pars 
triangularis; CMF, caudal middle frontal; ENT, entorhinal; PARAC, paracentral; IP, inferior parietal; PHIP, parahippocampal; 
POC, postcentral. 
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Table 2. Most important brain regions describing speech categorization during stimulus encoding (13 ROIs) and response decision (15 
ROIs) at a stability threshold ⩾ 0.5. 

Encoding (82.6% total accuracy) Decision (83.2% total accuracy) 

Rank ROI name 
ROI 
abbrev. 

Stability 
score ROI name 

ROI 
abbrev. 

Stability 
score 

1 Supramarginal L lSUPRA 0.73a Superior parietal L lSP 0.63 
2 Caudal anterior 

cingulate R 
rCAC 0.66 Insula L lINS 0.60 

3 Inferior parietal L lIP 0.65 Isthmus cingulate R rIST 0.58 
4 Pars orbitalis R rPOB 0.61 Pars opercularis R rPOP 0.58 
5 Transverse temporal L lTRANS 0.61 Superior frontal L lSF 0.57 
6 Superior frontal R rSF 0.58 Caudal middle frontal R rCMF 0.57 
7 Pars opercularis L lPOP 0.57 Isthmus cingulate L lIST 0.56 
8 Lateral orbitofrontal L lLOF 0.57 Pars triangularis R rPT 0.54 
9 Superior frontal L lSF 0.55 Caudal middle frontal L lCMF 0.54 
10 Pars triangularis R rPT 0.54 Entorhinal L lENT 0.53 
11 Superior parietal R rSP 0.53 Pars opercularis L lPOP 0.53 
12 Caudal middle frontal R rCMF 0.53 Paracentral R rPARAC 0.52 
13 Fusiform L lFUS 0.52 Inferior parietal L lIP 0.51 
14 Parahippocampal R rPHIP 0.51 
15 Postcentral L lPOC 0.51 
a A score of 0.73, for example, means that out of 1000 iterations, the ERP feature of this ROI was selected 730 times by stability selection. 

Table 3. WLS regression results describing how individual brain ROIs predict behavioral CP. 

ROI name ROI abbrev. Coefficient t-value p-value 

1 Superior parietal L lSP −0.2163 −3.008 0.004920 
2 Insula L lINS 0.1808 5.188 0.000010 
3 Isthmus cingulate R rIST −0.2679 −3.764 0.000633 
4 Pars opercularis R rPOP 0.1231 4.429 0.000093 
5 Superior frontal L ISF −0.1726 −3.190 0.003055 
6 Caudal middle frontal R rCMF 0.1544 2.367 0.023774 
7 Isthmus cingulate L lIST 0.2259 2.792 0.008545 
8 Pars triangularis R rPT −0.0214 −0.679 0.501925 
9 Caudal middle frontal L ICMF 0.0153 0.345 0.732223 
10 Entorhinal L lENT 0.1170 5.009 0.000013 
11 Pars opercularis L lPOP 0.1475 3.892 0.000441 
12 Paracentral R rPARAC 0.2223 3.308 0.002226 
13 Inferior parietal L lIP −0.1017 −1.364 0.181508 
14 Parahippocampal R rPHIP −0.0422 −2.097 0.043540 
15 Postcentral L lPOC 0.1809 2.749 0.009512 

RH, where optimal decoding occurred 20–80 ms later 
(LH: 140 ms; RH: 200 ms). These latencies are com-
patible with the N1-P2 waves of the auditory ERPs 
and suggest a rapid speed to phonetic categoriza-
tion (Bidelman et al 2013, Alho et al 2016, De Taillez 
et al 2020). Our results are consistent with previ-
ous neuroimaging studies that have shown the N1 
and P2 ERPs are sensitive to auditory perceptual 
object identification (Wood et al 1971, Alain 2007, 
Bidelman et al 2013). The better decoding by LH 
as compared to RH activity is consistent with the 
dominance of LH in phoneme discrimination and 
speech sound processing (Zatorre et al 1992, Frost 
et al 1999, Tervaniemi and Hugdahl 2003, Bidelman 
and Howell 2016, Bidelman and Walker 2019). Our 
neural decoding results also corroborate previous 
hypothesis-driven work (Chang et al 2010, Bidelman 
et al 2013, 2014) by confirming speech sounds are 

converted to an abstract, categorical representation 
within the first few hundred milliseconds after stim-
ulus onset. 

4.2. Differential brain-networks involved in 
encoding and decision processing 
Our results help identify the most stable, relev-
ant, and invariant functional brain ROIs that sup-
port the brain-networks involved in encoding and 
decision processes of speech categorization using 
an entirely data-driven approach (stability selection 
coupled with SVM). During stimulus encoding, sta-
bility selection have identified 13 consistent ROIs that 
differentiate speech categories (82.6% accuracy; 0.5 
stability threshold). Out of these 13 regions, eight of 
the ROIs are critically involved in the dorsal-ventral 
pathway for speech-language processing (Hickok and 
Poeppel 2004). These included areas in frontal lobe 
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including IFG [BA 44, (i.e. pars opercularis L, pars 
triangularis R), i.e. ‘Broca’s area’], three regions from 
parietal and two regions from temporal lobe includ-
ing primary auditory cortex (i.e. transverse tem-
poral L). For later decision stages of the task, the 
same criterion of decoding performance (83.2% @ 
0.5 stability threshold) have identified 15 ROIs that 
showed categorical neural organization. Out of these 
15 regions, eight areas are from inferior frontal 
areas including BA 44 (i.e. pars opercularis L, pars 
opercularis R) and BA 45 (i.e. pars triangularis R), 
four regions from parietal lobe, and three regions 
from temporal lobe. Our data reveal two, relatively 
sparse, and partially overlapping neural networks 
that support different stages of speech categorization 
process. 

Among the encoding and decision networks iden-
tified from our EEG data, five regions were common 
between the two topologies. Notably were the inclu-
sion of BA44/45 that are heavily involved in speech-
language processing (Novick et al 2010, Hickok et al 
2011, Lee et al 2012). Early activation of IFG (dur-
ing encoding) could be due to higher order speech 
centers exerting an inhibitory influence on aud-
itory representations in order to prevent interfer-
ence from nonlinguistic cues (Liberman et al 1981, 
Dehaene-Lambertz et al 2005) and optimize cat-
egorization, particularly under states of uncertainty 
(Carter and Bidelman 2021). The left inferior parietal 
lobe also appears as a common hub among the two 
networks. Superior parietal areas have been linked 
with auditory, phoneme, sound categorization, par-
ticularly when listeners are asked to resolve context 
or ambiguity (Dufor et al 2007, Myers and Blum-
stein 2008, Feng et al 2018). Involvement of super-
ior frontal lobe in both networks is perhaps con-
sistent with its role in higher cognitive functions 
and working memory (Klingberg et al 2002, Nyberg 
et al 2003). The fact that these extra-sensory regions 
can decode category structure even during stimu-
lus encoding (<150 ms) suggests that the formation 
of speech categories might operate nearly in par-
allel within lower-order (sensory) and higher-order 
(cognitive-control) brain structures (Toscano et al 
2018). However, these category representations need 
not be isomorphic across the brain. For example, cat-
egory formation might reflect a cascade of events 
where speech units are reinforced and further dis-
cretized by a recontact of acoustic-phonetic with lex-
ical representation of the speech category (Myers and 
Blumstein 2008). 

Notable among the non-overlapping regions 
between stages were left primary auditory cortex 
(transverse temporal) and supramarginal gyrus, 
both of which were exclusive to the stimulus encod-
ing period. Both regions have been implicated in 
the early acoustic analysis of the speech signal and 
related phonological processing (Zatorre et al 1992, 
Hickok et al 2000, Geiser et al 2008, Whitwell et al 

2013, Deschamps et al 2014, Oberhuber et al 2016). 
Intuitively, their absence during the decision stage 
further suggests the categorical representation of 
speech, while present early in time (<150 ms), 
might take different forms in auditory-sensory cor-
tex before being broadcast to decision mechanisms 
downstream. 

Left postcentral gyrus is also exclusive dur-
ing decision. Activation of this area proximal to 
the behavioral response execution most probably 
reflects motor planning and/or speech reconstruc-
tion (Martin et al 2014). Additional non-overlapping 
ROIs included pars opercularis in the RH. Right 
IFG has been implicated in attentional control and 
response imbibition (Hampshire et al 2010), which 
is consistent with its exclusive involvement in the 
decision stage of our task. Presumably, the other 
non-overlapping regions identified via stability selec-
tion (superior parietal L, insula L, Isthmus cingulate 
(l/rIST), caudal middle frontal L, entorhinal L, para-
central R, parahippocampal R) are also involved in 
decision processes, though as of yet, in an unknown 
way. Minimally, the involvement parahippocampal 
regions implies putative memory and retrieval pro-
cesses. Still, more detailed localization studies (e.g. 
using functional magnetic resonance imaging) are 
needed to validate our EEG data, which offers a much 
coarser spatial resolution. 

It is noticeable that during encoding, 7 out of 13 
ROIs are from LH; for decoding, 9 out of 15 ROIs. 
The LH bias in our decoding data is perhaps expec-
ted given the LH dominance in auditory language 
processing (Caplan 1994, Tzourio et al 1998, Hull 
and Vaid 2006). Moreover, our results support previ-
ous studies by confirming a bilateral fronto-parietal 
network involved in auditory attentional, working 
memory (Belin et al 2002, Schneiders et al 2012), 
sound discrimination tasks (Hickok and Poeppel 
2000), and phoneme categorization (Lee et al 2012, 
Loui 2015, Bidelman and Walker 2019). Interestingly, 
our study shows that only 15 brain regions (during 
decision) are needed to predict listeners’ behavior CP 
with 85.0% accuracy. 

In this work, we pooled Tk1 (i.e., /u/) and 
Tk 5 (i.e., /a/) stimuli since they are categorically 
unambiguous vowels and examined their decoding 
relative to Tk 3, which is categorically ambiguous 
(Bidelman et al 2013). This approach partly assumes 
categorical responses of Tk1 and Tk5 are similar 
to one another. In contrast, Tk3 might represent 
a mixture of ambiguous responses, plus categorical 
responses to the perception of Tk1 or Tk5 (i.e. bistable 
perception). Though we do not find strong support 
for this notion in decoding source-level ERPs see 
Footnote (#2). Nevertheless, future work could exam-
ine decoding as a function of listeners’ labeling speeds 
(e.g. Al-Fahad et al 2020) or listeners’ trial-to-trial 
phonetic perception (Bidelman et al 2013) of speech 
tokens to unpack these alternate possibilities. 
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