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Abstract 

■ Musicianship has been associated with auditory processing 
benefits. It is unclear, however, whether pitch processing expe-
rience in nonmusical contexts, namely, speaking a tone lan-
guage, has comparable associations with auditory processing. 
Studies comparing the auditory processing of musicians and 
tone language speakers have shown varying degrees of  
between-group similarity with regard to perceptual processing 
benefits and, particularly, nonlinguistic pitch processing. To test 
whether the auditory abilities honed by musicianship or speak-
ing a tone language differentially impact the neural networks 
supporting nonlinguistic pitch processing (relative to timbral 
processing), we employed a novel application of brain signal 
variability (BSV) analysis. BSV is a metric of information pro-
cessing capacity and holds great potential for understanding 
the neural underpinnings of experience-dependent plasticity. 
Here, we measured BSV in electroencephalograms of musicians, 

tone language-speaking nonmusicians, and English-speaking 
nonmusicians (controls) during passive listening of music and 
speech sound contrasts. Although musicians showed greater 
BSV across the board, each group showed a unique spatio-
temporal distribution in neural network engagement: Controls 
had greater BSV for speech than music; tone language-speaking 
nonmusicians showed the opposite effect; musicians showed 
similar BSV for both domains. Collectively, results suggest that 
musical and tone language pitch experience differentially affect 
auditory processing capacity within the cerebral cortex. How-
ever, information processing capacity is graded: More experi-
ence with pitch is associated with greater BSV when processing 
this cue. Higher BSV in musicians may suggest increased infor-
mation integration within the brain networks subserving speech 
and music, which may be related to their well-documented ad-
vantages on a wide variety of speech-related tasks. ■ 

INTRODUCTION 

Psychophysiological evidence supports an association 
between music and speech such that experience in one 
domain is related to processing in the other (e.g., Bidelman, 
Gandour, & Krishnan, 2011; Koelsch, Maess, Gunter, & 
Friederici, 2001). Musicianship has been associated with 
benefits to auditory processing, such as enhanced spectral 
acuity for the perception of degraded speech (Zendel & 
Alain, 2012; Bidelman & Krishnan, 2010; Parbery-Clark, 
Skoe, Lam, & Kraus, 2009), lexical pitch judgments (e.g., 
Chandrasekaran, Krishnan, & Gandour, 2009; Schon, Magne, 
& Besson, 2004), and binaural sound processing (Parbery-
Clark, Strait, Hittner, & Kraus, 2013). It is unclear, how-
ever, whether pitch processing experience in nonmusical 
contexts, namely, speaking a tone language, has compara-
ble associations with auditory processing. 

Tone languages, unlike other types of languages, use 
pitch phonemically (i.e., at the word level; e.g., Yip, 
2002) to distinguish lexical meaning. Of all tone lan-

guages, Cantonese has one of the largest tonal inven-
tories, comprising six tones—three of which are level, 
and three of which are contour (Rattanasone, Attina, 
Kasisopa, & Burnham 2013; Wong et al., 2012). These 
level pitch patterns are differentiable based on pitch 
height (Khouw & Ciocca, 2007; Gandour, 1981). The 
proximity of tones is approximately one semitone (i.e., 
a 6% difference in frequency, calculated from Peng, 
2006), which is also the smallest distance found between 
pitches in music (Bidelman, Hutka, & Moreno, 2013). 
Note that this does not mean that Cantonese language 
experience is on par with musicians’ auditory experience. 
Cantonese speakers have less pitch processing experi-
ence than musicians who have extensive experience with 
12 level tones (i.e., the number of semitones in a scale) at 
several octaves, the processing of pitch contours as a 
result of the demands of musicianship, and the percep-
tion and production of complex melodies and harmonies. 
Furthermore, musicians’ auditory demands include pro-
cessing simultaneous tones (e.g., chords) and attending 
to the tone quality (i.e., timbre) of their instrument and 
other instruments around them. In comparison, tone lan-
guage speakers have lesser auditory demands, typically 
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processing a single, sequential stream of speech, without 
the same emphasis as musicians on tracking timbral cues. 
Because of the higher auditory demands faced by musi-
cians (relative to tone language speakers), one might pre-
dict that benefits to auditory processing in musicians might 
be greater than to tone language speakers. Furthermore, 
one might predict that benefits to auditory processing in 
tone language speakers might be greater than in controls 
without musical training or tone language experience. 
However, studies comparing the auditory processing of 
musicians and tone language speakers have shown varying 
degrees of between-group similarity with regard to percep-
tual processing benefits and, particularly, nonlinguistic 
pitch processing. 
Tone language experience (e.g., Mandarin: Bidelman 

et al., 2011; Cantonese: Bidelman, Hutka, et al., 2013) 
has been shown to similarly affect the neural encoding 
(Bidelman et al., 2011) and perception (Bidelman, Hutka, 
et al., 2013) of pitch. These studies imply that tone lan-
guage experience may confer some benefits to spectral 
acuity that are comparable with those conferred by musi-
cianship. However, behavioral studies have also revealed 
contradictory findings on tone language speakers’ non-
linguistic pitch perception abilities, ranging from weak 
(Wong et al., 2012; Giuliano, Pfordresher, Stanley, Narayana, 
& Wicha, 2011) to no enhancements (Schellenberg & 
Trehub, 2008; Bent, Bradlow, & Wright, 2006; Stagray & 
Downs, 1993). Neuroimaging studies have also been 
unclear in this regard (e.g., Bidelman et al., 2011). Our 
group has found that enhanced preattentive processing 
in brainstem and cortical auditory evoked potentials in 
musicians (Hutka, Bidelman, & Moreno, 2015; Bidelman 
et al., 2011), as well as tone language speakers (Bidelman 
et al., 2011) for nonlinguistic pitch. Yet, neural advan-
tages do not necessarily coincide with behavioral benefits 
in nonlinguistic pitch discrimination and vice versa (Hutka 
et al., 2015). 
In Bidelman et al. (2011), musicians and tone lan-

guage speakers had similar, stronger brainstem represen-
tation of the defining pitches of musical sequences, as 
compared with controls (i.e., nonmusicians, non-tone 
language speakers). However, only musicians showed 
enhanced behavioral, musical pitch discrimination, rela-
tive to tone language speakers and controls. These find-
ings suggest that enhanced processing at the brainstem 
level (i.e., preattentive stages of auditory processing) do 
not necessarily equate to perceptual, behavioral benefits. 
More puzzling is the absence of neural effects, given the 
presence of perceptual benefits, which was observed in 
Hutka et al. (2015). Hutka et al. (2015) measured the 
behavioral (i.e., difference limens) and automatic change 
detection response (i.e., MMN) to variations in pitch and 
timbre in musicians, Cantonese speakers, and non-
musicians controls. Musicians and Cantonese speakers 
outperformed controls on the behavioral pitch discrimi-
nation task. Only musicians showed enhanced behavioral 
timbral processing, relative to tone language speakers 

and controls. Parallel enhancements of behavioral spectral 
acuity in early auditory processing were observed in musi-
cians only. That is, tone language users’ advantages in 
pitch discrimination that were observed behaviorally were 
not reflected in early cortical MMN responses to pitch 
changes. 

If both musicianship and speaking a tone language 
hone a common cue (pitch), why is this not reflected 
in their automatic cortical responses to pitch changes 
(Hutka et al., 2015)? It is possible that the mean activa-
tion over a cortical patch (i.e., the ERP, MMN measures) 
used in Hutka et al. (2015) may not adequately represent 
neural processes underlying the processing pitch. Musi-
cians arguably have a greater range of experience with 
pitch (e.g., manipulating and producing complex melo-
dies and harmonies) than do tone language speakers. 
By this logic, tone language speakers should not show 
neural responses to—nor behavioral benefits in—pitch 
discrimination that is comparable to that of musicians. 
However, because such behavioral benefits were ob-
served in Cantonese speakers in Hutka et al. (2015), it is 
possible that there are unique neural circuitries associ-
ated with pitch processing in these individuals that were 
not adequately captured in ERP measures. More generally, 
this discrepancy between brain and behavior raises the 
question of the extent to which musicianship and tone 
language experience similarly shape the processing of non-
linguistic pitch processing, relative to controls. 

To test whether automatic, nonlinguistic pitch process-
ing is supported by common neural network activations 
in musicians and Cantonese speakers, two requirements 
emerge. First, one would need to apply a methodology 
that could detect nuanced effects in the brain signal that 
might underlie the differences between auditory process-
ing for Cantonese speakers and musicians. Second, one 
would need to apply this methodology to the existing 
EEG data set from Hutka et al. (2015), which could then 
be directly compared with the ERP data from this study. 
Both of these requirements were met by the measurement 
of brain signal variability (BSV) in the continuous EEG sig-
nal as a metric of information integration (Heisz, Shedden, 
& McIntosh, 2012; Misic, Mills, Taylor, & McIntosh, 2010; 
Ghosh, Rho, McIntosh, Kötter, & Jirsa, 2008; McIntosh, 
Kovacevic, & Itier, 2008). 

Brain Signal Variability 

BSV is the brain signal’s transient, temporal fluctuations 
(McIntosh et al., 2013). There is strong evidence that BSV 
conveys important information about network dynamics 
(Deco, Jirsa, & McIntosh, 2011). The modeling of neural 
networks involves mapping an integration of information 
across widespread brain regions, via variations in correlated 
activity between areas across multiple timescales (Honey, 
Kötter, Breakspear, & Sporns, 2007; Jirsa & Kelso 2000; 
see Garrett et al., 2013, for a discussion). These transient 
changes result in fluctuations in the dynamics of the 
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corresponding brain signal (Garrett et al., 2013). The 
networks with more potential configurations produce a 
more variable response (Garrett et al., 2013). Therefore, 
BSV appears to represent the system’s information 
processing capacity, in which higher variability reflects 
greater information integration (Garrett et al., 2013; 
McIntosh et al., 2008, 2013; Heisz et al., 2012; Misic 
et al., 2010; Ghosh et al., 2008). However, like any non-
linear system, there is a theoretical “sweet spot” around 
which too little or too much variability may compromise 
information processing (Deco, Jirsa, & McIntosh, 2013). 

As a metric of neural network dynamics, BSV provides 
valuable information about these dynamics that could 
not be obtained through the sole measurement of mean 
neural activity (e.g., using ERPs; Heisz et al., 2012; Vakorin, 
Misic, Krakovska, & McIntosh, 2011; McIntosh et al., 2008; 
see also Garrett, Kovacevic, McIntosh, & Grady, 2011; 
Ghosh et al., 2008). Averaging across trials (i.e., as in a 
traditional ERP analysis) removes the variability in each 
trial (see Hutka, Bidelman, & Moreno, 2013, for a dis-
cussion). This variability is not noise, instead providing 
information about network dynamics (Deco et al., 2011) 
and considers the entire neural network’s activation and 
interactions (Hutka et al., 2013). 

We posit that BSV might have great potential for study-
ing the implicit neuroplasticity afforded by experience 
and learning. Studies have shown that the more informa-
tion available to a listener about a given stimulus, the 
greater the BSV in response to that stimulus (Heisz 
et al., 2012; Misic et al., 2010). Variability should there-
fore increase as a function of learning, such that the more 
information one acquires for a stimulus, the greater infor-
mation carried in the brain signal (Heisz et al., 2012). A 
study of Heisz et al. (2012) confirmed this expectation, 
showing greater BSV was associated with greater knowl-
edge representation for certain faces—a result that was 
not reflected in the mean ERP amplitude in the same data 
set. Variability increased with face familiarity, suggesting 
that the perception of well-known stimuli engages a 
broader network of brain regions, manifesting in greater 
spatiotemporal changes in BSV (Heisz et al., 2012). These 
findings suggest that BSV is a useful metric of knowledge 
representation, capable of conveying information above 
and beyond what could be learned for mean neural activ-
ity. BSV can therefore be applied to the study experience-
dependent plasticity and, in particular, pitch processing 
in musicians and tone language speakers (Hutka et al., 
2013). 

At present, we applied BSV analysis to the continuous 
EEG data set (i.e., not the ERP data) of Hutka et al. 
(2015), with the objective of studying the implicit impact 
of neuroplasticity afforded by experience and learning1 in 
the auditory processing of nonlinguistic pitch in musi-
cians, tone language speakers, and controls. Specifically, 
this design tested whether pitch processing, relative to 
another auditory cue (timbral processing), is supported 
by common neural network activations in musicians 

and Cantonese speakers, relative to controls. Note that, 
throughout this manuscript, we are not seeking to make 
claims regarding fine-grained anatomical differences be-
tween groups or conditions. Instead, we sought to exam-
ine activation patterns of information integration during 
automatic processing of music (i.e., nonlinguistic pitch) 
and speech (linguistic timbre) in the three aforemen-
tioned groups. 

Hypotheses 

If auditory experience via musicianship and tone lan-
guage experience are associated with comparable infor-
mation processing capacities supporting automatic 
music processing (i.e., pitch), then both groups would 
show greater BSV supporting auditory processing, as 
compared with controls (i.e., musicians = Cantonese 
speakers > controls). If the auditory expertise honed 
by musicianship and tone language are associated with 
different information processing capacities supporting 
automatic pitch processing, then we would predict dif-
ferent BSV between musicians and tone language speakers. 
This latter prediction would also manifest in unique spatio-
temporal distributions for each group, as each group 
would be using a different brain network to support pro-
cessing of pitch versus timbre. 

METHODS 

Participants, stimuli, and EEG recording and preprocess-
ing are the same as in Hutka et al. (2015). 

Participants 

Sixty right-handed, young adult participants were re-
cruited from the University of Toronto and Greater Toronto 
Area. All participants provided written, informed consent 
in compliance with an experimental protocol approved 
by the Baycrest Centre research ethics committee and 
were provided financial compensation for their time. 
English-speaking musicians (M; n = 21, 14 women) had 
at least 8 years of continuous training in Western classi-
cal music on their primary instrument (μ ± σ: 15.43 ± 
6.46 years), beginning formal music training at a mean age 
of 7.05 (±3.32 years). English-speaking nonmusicians (NM; 
n = 21, 14 women) had ≤3 years of formal music training 
on any combination of instruments throughout their life-
time (μ ± σ: 0.81 ± 1.40 years). Neither Ms nor NMs 
had experience with a tonal language of any kind. Native 
Cantonese-speaking participants (C; n = 18; 11 women) 
also had minimal musical training throughout their life-
time (0.78 ± 0.94 years). Importantly, NM and C did 
not differ in their minimal extent of music training, F(1, 
37) = 0.007, p = .935. C were born and raised in main-
land China or Hong Kong, started formal instruction in 
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English at mean age of 10.27 (±5.13 years), and used 
Cantonese on a regular basis (>40% of daily language use). 
The three groups were closely matched in age (M: 

25.24 ± 4.17 years, C: 24.17 ± 4.12 years, NM: 23.38 ± 
4.07 years; F(2, 57) = 1.075, p = .348) and years of for-
mal education (M: 18.19 ± 3.25 years, C: 16.94 ± 2.46 
years; NM: 16.67 ± 2.76 years; F(2, 57) = 1.670, p = 
.198). All groups performed comparably on a measure 
of general fluid intelligence (Raven’s Advanced Pro-
gressive Matrices; Raven, Raven, & Court, 1998) and non-
verbal, short-term visuospatial memory (Corsi blocks; 
Corsi, 1972), p > .05. 

EEG Task Stimuli 

EEGs were recorded using a passive, auditory oddball 
paradigm, consisting of two conditions—namely, music 
and speech sound contrasts presented in separate blocks 
(Figure 1). There were a total of 780 trials in each con-
dition including 90 large deviants (12% of the trials) 
and 90 small deviants (12% of the trials). The notes (piano 
timbre) consisted of middle C (C4, F0 = 261.6 Hz), middle 
C mistuned by an increase of 0.5 semitones (large deviant; 

269.3 Hz; 2.9% increase in frequency from standard), and 
middle C mistuned by an increase of 0.25 semitones 
cents (small deviant; 265.4 Hz; 1.4% increase in frequency 
from standard). Tone durations were 300 msec, including 
5 msec of rise/fall time to reduce spectral splatter in the 
stimuli. Note that these changes were selected because 
previous behavioral research has demonstrated that both 
Cantonese speakers and musicians can distinguish be-
tween half-semitone changes in a given melody better 
than controls, whereas musicians outperform Cantonese 
speakers and controls when detecting a quarter-semitone 
change (Bidelman, Hutka, et al., 2013). 

Speech stimuli consistent of three steady-state vowel 
sounds (Bidelman, Moreno, & Alain, 2013), namely, 
“oo” as in “book” [ʊ], “aw” as in “pot” [a], and “uh” as in 
“but” [Λ], as the standard, large deviant, and small deviant 
(on the border of categorical perception between the 
standard and large deviant; Bidelman, Moreno, et al., 2013), 
respectively. The duration of each vowel was 250 msec, 
including 10 msec of rise/fall. Note that the speech and 
note stimuli durations are different, as we were interested 
in maintaining natural acoustic features and presenting the 
sound as naturally as possible (Hutka et al., 2015). The 

Figure 1. Spectrograms from Hutka et al. (2015), demonstrating the standard, large deviant, and small deviant stimuli for the music (top row) and 
speech (bottom row) conditions. White lines mark the frequencies of each tone’s fundamental frequency and each vowel’s first formant, respectively. 
Reprinted from Hutka et al. (2015), p. 55, copyright 2016, with permission from Elsevier. 
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sound onset asynchrony was 1000 msec in both conditions 
so that the stimulus repetition rates (and thus, neural 
adaptation effects) were comparable for both speech and 
music EEG recordings. 

The standard vowel had a first formant (F1) of 430 Hz, 
the large deviant 730 Hz (41.1% increase in frequency 
from standard), and the small deviant 585 Hz (26.5% in-
crease in frequency from standard). Speech tokens con-
tained identical voice fundamental (F0), second (F2), and 
third (F3) formant frequencies (F0: 100, F2: 1090, and F3: 
2350 Hz, respectively), chosen to match prototypical pro-
ductions from a male speaker (Peterson & Barney 1952). 
The magnitude of F1 change between the standard and 
each speech deviant was chosen to parallel the magni-
tude of change in the music standard and deviants. How-
ever, it is notable that a greater magnitude of change was 
required to detect the standard large deviant and stan-
dard small deviant changes for F1 than F0. This difference 
was informed by past findings showing that participants 
require a larger percent change between two vowel 
sounds (i.e., F1) to detect a difference, as compared with 
between two pitches (i.e., F0; Bidelman & Krishnan, 
2010). Pilot testing was used at present to determine 
the specific F0 and F1 standard deviant changes that 
musicians and nonmusicians could reliably detect. 

EEG Recording and Preprocessing 

EEG was recorded using a 76-channel ActiveTwo amplifi-
er system (Biosemi, Amsterdam, The Netherlands) with 
electrodes placed around the scalp according to standard 
10–20 locations (Oostenveld & Praamstra, 2001). Contin-
uous EEG recordings were sampled at 512 Hz and band-
pass filtered online between 0.01 and 50 Hz. Source 
estimation was performed on the EEG data at 72 ROIs2 

defined in Talairach space (Diaconescu, Alain, & McIntosh, 
2011) using sLORETA (Pascual-Marqui, 2002), as imple-
mented in Brainstorm (Tadel, Baillet, Mosher, Pantazis, & 
Leahy, 2011). Source reconstruction was constrained to 
the cortical mantle of the standardized brain template 
MNI/Colin27 defined by the Montreal Neurological Insti-
tute in Brainstorm. Current density for one source orien-
tation (X component) was mapped at 72 brain ROIs, 
adapting the regional map coarse parcellation scheme of 
the cerebral cortex developed in Kötter and Wanke 
(2005). Multiscale entropy (MSE) was calculated on the 
source waveform at each ROI for each participant. 

Multiscale Entropy 

To characterize BSV, MSE (Costa, Goldberger, & Peng, 
2002, 2005) was measured, as it indexes sample entropy 
across multiple timescales. MSE quantifies sample entropy 
(Richman & Moorman, 2000) at multiple timescales (Costa 
et al., 2002, 2005). We calculated MSE in two steps using 
the algorithm available at www.physionet.org/physiotools/ 
mse (Goldberger et al., 2000). First, the EEG signal was 

progressively down-sampled into multiple coarse-grained 
timescales where, for scale t, the time series is constructed 
by averaging the data points with nonoverlapping win-
dows of length t. Each element of a coarse-grained time 
series, yj

(τ) , is calculated according to Equation 1: 

y τð Þ  
j ¼ 1 

τ 

Xjτ 

i¼ j−1ð Þτþ1 

xi; 1 ≤ j ≤ 
N 
τ 

(1) 

The number of scales is determined by a function of the 
number of data points in the signal and the data in this 
study supported 12 timescales [sampling rate (512 Hz) × 
epoch (1200 msec)/50 time points per epoch = maximum 
of 12 scales]. To convert timescale into milliseconds, 
the timescale was divided by the EEG sampling rate 
(512 Hz). 
Second, the algorithm calculates the sample entropy 

(SE) for each coarse-grained time series ( yj
(τ); Equation 2): 

SE m; r; Nð Þ ¼ ln 
XN−m 

i¼1 
n0 
i m 

XN−m 

i¼1 
n0 
i m þ 1 

(2) 

Sample entropy quantifies the predictability of a time 
series by calculating the conditional probability that any 
two sequences of m consecutive data points that are sim-
ilar to each other within a certain criterion (r) will remain 
similar at the next point (m + 1) in the  data  set (N), 
where N is the length of the time series (Richman & 
Moorman, 2000). In this study, MSE was calculated with 
pattern length3 set to m = 5, and the similarity criterion4 

was set to r = 1.  
MSE estimates were obtained for each participant as 

the mean across single-trial entropy measures for each 
timescale. 

Spectral Analysis 

Power spectral density (PSD) was also measured for all 
trials. This spectral analysis was conducted because pre-
vious studies suggested that changes in MSE tend to 
closely follow changes in spectral power, while provid-
ing unique information about the data (Misic et al., 2010; 
Lippe, Kovacevic, & McIntosh, 2009; McIntosh et al., 2008; 
Gudmundsson, Runarsson, Sigurdsson, Eiriksdottir, & 
Johnsen, 2007). Therefore, changes in sample entropy 
across sources and temporal scales were examined, as 
well as at changes in PSD across sources and frequency 
bands. 
Single-trial power spectra were computed using the 

fast Fourier transform. To capture the relative contribu-
tion from each frequency band, all time series were first 
normalized to  mean 0 and  SD 1. Given a sampling rate 
of 512 Hz and 614 data points per trial, the effective 
frequency resolution was 0.834 Hz. Hence, all spec-
tral analyses were constrained to a bandwidth of 0.834– 
50 Hz. 
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Statistical Analysis 

Task Partial Least Squares Analysis 

Task partial least squares analysis (PLS) is a multivariate 
statistical technique that was used to assess between- and 
within-subject changes in MSE during listening (McIntosh 
& Lobaugh, 2004; McIntosh, Bookstein, Haxby, & Grady, 
1996). Similar to multivariate techniques, such as canon-
ical correlation analysis, PLS operates on the entire data 
structure at once, extracting the patterns of maximal co-
variance between two mean-centered data matrices, in 
the present case either group membership or condition 
(i.e., task design), and MSE measures (McIntosh et al., 
2013). The analysis was done to emphasize two aspects 
of the experiment: (1) Between-group, which empha-
sizes main effects by centering group means to the over-
all  grand mean, and (2) Between-condition, which 
identifies potential interactions by mean-centering each 
group to its own grand mean, which eliminates the 
between-group effects. 
The PLS model is constructed with a singular value de-

composition applied to the mean-centered MSE or PSD 
matrices. Singular value decomposition identified the 
strongest group and/or condition differences and the cor-
responding scalp topography, producing a set of orthog-
onal latent variables (LVs), with descending order of 
magnitude of accounted-for covariance. Each LV consists 
of (1) a pattern of design scores, (2) a singular image 
showing the distribution across brain regions and sam-
pling scales, and (3) a singular value representing the co-
variance between  the design scores and  the singular  
image (McIntosh & Lobaugh, 2004; McIntosh et al., 
1996). Statistical assessment in PLS consists of two steps. 
First, the overall significance of each LV that related the 
two data matrices was assessed with permutation testing 
(Good, 2000), which generates an estimated null distri-
bution of the data. An LV was considered significant if 
the observed pattern (i.e., its singular value) was present 
less than 5% of the time in random permutations (i.e., 
p < .05). The dot product of an individual subject’s raw  
MSE data and the singular image from the LV produces 
a brain score. The brain score is similar to a factor score 
in factor analysis that indicates how strongly an individual 
participant expresses the patterns on the LV. Analysis of 
brain scores allowed us to estimate 95% confidence inter-
vals for the mean effects in each group and task condition. 
Second, the reliability of the scalp topographies was 

determined using bootstrap resampling. This bootstrap 
resampling estimated standard error confidence intervals 
around the individual singular vector weights in each LV, 
assessing the relative contribution of particular locations 
and timescales and the stability of the relation with either 
group or condition (Efron & Tibshirani, 1986). For scalp 
topographies, the singular vector weights for each chan-
nel were divided by the bootstrap estimated standard er-
ror, giving bootstrap ratios. A bootstrap ratio is similar to 
a z score if the distribution of singular vector weights is 

Gaussian, but are best interpreted as approximating a 
confidence interval (McIntosh et al., 2013). Brain regions 
with a singular vector weight over standard error ratio 
>3.0 correspond to a 99% confidence interval and were 
considered to be reliable (Sampson, Streissguth, Barr, & 
Bookstein, 1989). 

The large and small deviant conditions were combined 
into a single condition for all analyses, as preliminary 
analysis showed there were no differences in MSE or 
PSD between these conditions. 

RESULTS 

All groups and conditions were entered into the task PLS 
analysis. Figures 2, 4, and 5 show both MSE and spectral 
data. 

Between-group Comparisons 

When comparing groups across all  conditions (Fig-
ure 2; Figure 3, showing sample entropy curves for each 
timescale, across all conditions), the first LV (LV1) of the 
MSE analysis captured greater sample entropy in the musi-
cian group as compared with the Cantonese group (LV1, 
p = .004, singular value = 1.0856 corresponding to 
43.82% of the covariance). This difference was robustly 
expressed across both fine and coarse timescales across 
all neural ROIs, particularly in the right hemisphere. The 
largest effects were seen across all timescales (particu-
larly, in coarse scales) in the right inferior parietal, angular 
gyrus, and primary somatosensory area; medial posterior 
cingulate; and bilateral primary motor, medial premotor, 
precuneus, cuneus, and superior parietal area. 

LV1 of the spectral analysis captured differences in the 
musician group as compared with the control and Cantonese 
groups (LV1, p = .012, singular value = 0.1626, corre-
sponding to 37.01% of the covariance). This difference 
was robustly expressed across frequencies that were 
lower than 20 Hz (primarily theta/alpha band: 4–12 Hz) 
in a number of brain regions similar or identical to those 
observed in the MSE results. 

Collectively, PLS analyses revealed that each group 
could be distinguished based on the  variability (MSE)  
and spectral details of their EEG (particularly in the right 
hemisphere), when listening to speech and music stimuli. 
Furthermore, in the areas in which these contrasts were 
robustly expressed (e.g., right angular gyrus; Figure 3), 
musicians had the greatest sample entropy across all 
conditions; Cantonese speakers had the lowest sample 
entropy; nonmusicians were in-between these two groups. 

Between-condition Comparisons 

LV1 for the MSE analysis (Figure 4) captured differences in 
sample entropy between the music and speech conditions 
for nonmusicians ( p = .002, singular value = 0.2518, 
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Figure 2. First LV (LV1), between-group comparison: Contrasting the EEG response to the music and speech conditions across measures of 
MSE (left) and spectral power (right). The bar graphs (with standard error bars) depict brain scores that were significantly expressed across the entire 
data set as determined by permutation at 95% confidence intervals. These results are consistent with a main effect of group. The image plot 
highlights the brain regions and timescale or frequency at which a given contrast was most stable; values represent ∼z scores, and negative values 
denote significance for the inverse condition effect. 
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corresponding to 22.85% of the covariance). These differ-
ences were robustly expressed at fine timescales in several 
left hemisphere areas, namely, the anterior insula, centro-
lateral and dorsomedial pFC, frontal polar area, and sec-
ondary visual areas. Specifically, greater information 
integration supporting speech processing, as compared 
with music processing, was observed in these left hemi-
sphere regions. Differences were also robustly expressed 
in the right primary and secondary visual areas and the 
cuneus. Namely, greater information processing capacity 
supporting music processing, rather than speech process-
ing, was observed in these right hemisphere regions. 
Similarly, LV1 of the spectral analysis captured spectral 

differences between the music and speech conditions for 
nonmusicians ( p < .001, singular value = 0.0533, corre-
sponding to 25.28% of the covariance). Processing of 
music, as compared with speech, was robustly expressed 
at frequencies below 10 Hz (e.g., theta, 4–7 Hz for  the  
music condition) in multiple left hemisphere regions, 
namely, the left anterior insula, claustrum, centrolateral 
and dorsomedial pFC, frontal polar, parahippocampal 
cortex, thalamus, and dorsolateral and ventrolateral pre-
motor cortex. These differences were also expressed in the 
midline posterior cingulate cortex, and the right cuneus, 
thalamus, and ventrolateral pFC. Processing of speech, as 
compared with music, was robustly expressed in frequencies 
above 12 Hz (e.g., beta, 12–18 Hz; gamma, 25–70 Hz for the 
speech stimuli) in multiple left hemisphere areas (left ante-
rior insula, centrolateral and dorsomedial pFC, OFC, frontal 
polar, and dorsolateral premotor cortex), and the right 
primary motor area, precuneus, and dorsolateral pFC. 
LV2 for the MSE analysis (Figure 5) captured differ-

ences in sample entropy between the music and speech 
conditions for Cantonese speakers ( p = .052, singular 

value = 0.2029, corresponding to 18.41% of the covari-
ance). Specifically, greater information processing capac-
ity for music processing, rather than speech processing, 
was robustly expressed in the midline posterior cingulate 
and retrosplenial cingulate cortex at fine timescales and 
the primary visual area at coarse timescales. Greater in-
formation processing capacity for speech processing, 
rather than music processing, was expressed in the left 
medial premotor cortex and right medial premotor cortex 
at coarse timescales. 

Similarly, LV2 of the spectral analysis captured dif-
ferences between the music and speech conditions for 
Cantonese speakers ( p = .036, singular value = 0.0382, 
corresponding to 18.12% of the covariance). The process-
ing of speech, as compared with music, was robustly ex-
pressed at frequencies below 10 Hz (e.g., theta, 4–7 Hz) 
in the bilateral medial premotor cortex. The processing 
of the music condition, as compared with speech, was 
robustly expressed in low-frequency activity (e.g., theta, 
4–7 Hz) in the left parahippocampal cortex, and right ante-
rior insula, ventral temporal cortex, and fusiform gyrus. 
Processing of music was also robustly expressed at frequen-
cies above 12 Hz (e.g., beta, 12–18 Hz; gamma, 25–70 Hz), 
in the midline posterior and retrosplenial cingulate cortex, 
left superior parietal cortex, and bilateral primary and 
secondary visual areas. 

Interestingly, a third LV (LV3), contrasting music and 
speech conditions for the musician group, was not signif-
icant (MSE: p = .256; spectral analysis: p = .210). Although 
it is possible that this effect would become significant at a 
larger sample size, the bootstrap-estimated standard errors 
were small, suggesting that this lack of an effect was robust 
(i.e., a stable-zero estimate; see McIntosh & Lobaugh 
2004). The fact that we failed to detect a difference be-
tween musicians’ processing of music or speech stimuli 
suggests that this group used a similar neural architecture 
to process acoustic information, regardless of the stimulus 
domain (i.e., music ≈ speech). 

Collectively, the between-condition analyses revealed 
that each group processed the distinction between music 
and speech using a unique spatiotemporal network. LV1 
showed that nonmusicians had greater sample entropy 
and higher-frequency activity for speech than music at 
several left hemisphere areas. LV2 showed that Cantonese 
speakers had greater sample entropy, for music than 
speech, particularly in midline regions. The spectral analy-
ses revealed that this contrast was also expressed across 
multiple frequency bands. LV3, which was not significant, 
suggested that musicians used similar neural networks to 
support the processing of both music and speech stimuli. 

DISCUSSION 

MSE Data 

By examining sample entropy between groups, we sought 
to test if musicianship and tone language (Cantonese) 

Figure 3. MSE curves for all groups, averaged across all conditions, 
at the right angular gyrus. Musicians have the highest sample entropy 
of all groups, followed by nonmusicians and Cantonese speakers. 
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Figure 4. First LV (LV1), between-condition comparison: Contrasting the EEG response to the music and speech conditions across measures of 
MSE (left) and spectral power (right) for nonmusicians. The bar graphs (with standard error bars) depict brain scores that were significantly 
expressed across the entire data set as determined by permutation tests at 95% confidence intervals. These results are consistent with an interaction 
effect. The image plot highlights the brain regions and timescale or frequency at which a given contrast was most stable; values represent 
∼z scores, and negative values denote significance for the inverse condition effect. 
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Figure 5. Second LV (LV2), between-condition comparison: Contrasting the EEG response to the music and speech conditions across 
measures of MSE (left) and spectral power (right) for Cantonese speakers. The bar graphs (with standard error bars) depict brain scores that 
were significantly expressed across the entire data set as determined by permutation tests at 95% confidence intervals. These results are consistent 
with an interaction effect. The image plot highlights the brain regions and timescale or frequency at which a given contrast was most stable; 
values represent ∼z scores, and negative values denote significance for the inverse condition effect. 
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experience are associated with comparable patterns of 
information integration during automatic processing of 
music (i.e., nonlinguistic pitch) and speech (linguistic 
timbre). Between groups, we found that musicians had 
greater BSV than nonmusicians when listening to both 
music and speech stimuli. Cantonese speakers had the 
lowest entropy of all three groups for both stimulus con-
ditions. Although this pattern of results was evident 
across multiple neural regions and timescales, it was par-
ticularly prominent in right hemisphere regions at coarse 
timescales. These data support the hypothesis that musi-
cianship and tone language differentially impact infor-
mation integration supporting both music (pitch) and 
speech (timbre) processing. It is notable that, although 
pitch cues are used extensively in both musicians’ and 
Cantonese speakers’ auditory experience, their informa-
tion processing networks for pitch appears to be differ-
entially shaped by their unique, domain-specific use and 
knowledge of this cue (Cantonese: linguistic pitch context; 
musicians: nonlinguistic pitch context). 

The finding that musicians’ increased BSV was most 
prominent in the right hemisphere corroborates the find-
ing that this hemisphere is engaged in fine spectral features 
of auditory input, as compared with the left hemisphere, 
which is more specialized for temporal processing (see 
Zatorre, Belin, & Penhune, 2002, for a review). Similarly, 
expression in coarse timescales suggests that the dynam-
ics supporting pitch and timbre processing are distrib-
uted, rather than locally based (Vakorin et al., 2011). 
Collectively, our findings indicate that musicians’ process-
ing of fine spectral features—both for pitch and timbre— 
is likely supported by a more expansive network than in 
Cantonese speakers and English-speaking nonmusicians. 
These data align with evidence that musicianship benefits 
a wide range of spectral processing (e.g., Parbery-Clark 
et al., 2013; Zendel & Alain, 2012; Bidelman & Krishnan, 
2010; Chandrasekaran et al., 2009; Parbery-Clark et al., 
2009; Schon et al., 2004) and, particularly, timbre (Hutka 
et al., 2015; Bidelman & Krishnan, 2010). 

Overall, the results suggest that the extent of informa-
tion integration during pitch processing is associated with 
whether one gained pitch experience via musicianship or 
speaking Cantonese. These results support our earlier 
prediction that, because of the higher auditory demands 
faced by musicians (relative to tone language speakers), 
the benefits to auditory processing in musicians are greater 
than to tone language speakers. It is interesting to contem-
plate if the present differences are rooted in the relative 
contributions of nature to each type of pitch experience. 
Specifically, there is evidence that suggests that musician-
ship is self-selected, with factors such as genetics (e.g., Tan, 
McPherson, Peretz, Berkovic, & Wilson, 2014), intelligence 
(Schellenberg, 2011), socioeconomic status (e.g., Sergeant 
& Thatcher, 1974), and personality traits (e.g., Corrigall, 
Schellenberg, & Misura, 2013), causing certain individuals 
to begin and continue music training, as compared with 
others (e.g., Schellenberg, 2015). Conversely, the networks 

supporting Cantonese speakers’ pitch processing are only 
subject to nurture, being born into a language that hap-
pens to use pitch to convey lexical meaning. Future studies 
could examine the link between preexisting factors and 
BSV related to pitch processing in musicians versus 
Cantonese speakers to determine the extent to which 
information processing capacity is shaped by nature rather 
than nurture. 
In the between-conditions results, we found that each 

group engaged unique spatiotemporal distributions to 
process the differences between music and speech. Non-
musicians had greater BSV supporting speech pro-
cessing, as compared with music processing (Figure 4). 
This difference was primarily expressed in several left 
hemisphere areas at fine timescales. The lateralization 
of this result is consistent with reports that in musically 
naive listeners, speech processing is more left-lateralized 
than music, given the left hemispheres’ specialization for 
temporal processing (see Zatorre et al., 2002, for a re-
view). These findings also suggest that nonmusicians 
may have greater, locally based information integration 
supporting speech processing, as compared with music 
processing (see Vakorin et al., 2011). Unlike for speech, 
this group’s processing of music was right-lateralized, 
aligning with evidence for right hemisphere specializa-
tion for spectral processing (Zatorre et al., 2002). 
Cantonese speakers had greater sample entropy for 

music as compared with speech (Figure 5). This distinc-
tion was primarily expressed in the midline posterior 
cingulate and retrosplenial cingulate cortex at fine time-
scales. This finding suggests that Cantonese speakers’ 
use of lexical pitch may manifest for greater sample en-
tropy for this cue, as compared with timbre. This finding 
aligns with the idea that the more familiar one is with a 
stimulus, the greater sample entropy associated with pro-
cessing that stimulus (i.e., familiar vs. unfamiliar faces; 
Heisz et al., 2012). Finally, we did not detect a difference 
in musicians’ BSV when processing music and speech 
sounds. This null result is consistent from what we would 
expect in musicians, as the auditory acuity honed by 
musicianship may enhance the information integration 
supporting both pitch and timbral cues in nonspeech 
and speech signals (i.e., music training benefitting speech 
processing; see Patel, 2011). Collectively, our data demon-
strate that each group processes the distinction between 
music and speech using a different spatiotemporal net-
work. Furthermore, the activation patterns for each group 
suggest a gradient of pitch processing capacity, such that 
the more experience one has with pitch (i.e., musicians > 
Cantonese > nonmusicians), the greater sample entropy 
associated with processing this cue. Namely, nonmusicians 
had greater sample entropy for speech as compared with 
music; Cantonese speakers had a greater sample entropy 
capacity for music than speech; musicians had similar levels 
of sample entropy for both conditions. An analogous gra-
dient was observed in behavioral data for a pitch memory 
task  in  Bidelman, Hutka, et al.  (2013). This gradient  effect  
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suggests that musicianship hones more than just spectral 
acuity (unlike in Cantonese speakers and nonmusicians) 
and is thus associated with greater information integration 
supporting both pitch and timbre processing. Cantonese 
speakers only use pitch in a lexical context and thus have 
less information integration than musicians, but still more 
than that of nonmusicians. 

Comparing MSE Results to the Spectral 
Analysis Results 

The MSE analyses yielded some unique information that 
was not obtained in the spectral analyses, as well as data that 
were complementary to the spectral analysis. Between-
group comparisons of sample entropy revealed that 
musicians had greater brain signal complexity than tone 
language speakers, across all conditions. In contrast, 
spectral analyses revealed that musicians’ processing of 
all conditions drew more heavily upon low theta/alpha 
(4–12 Hz) frequencies than in the other groups. Low fre-
quencies of the EEG have traditionally been interpreted 
as reflecting long-range neural integration (von Stein & 
Sarnthein, 2000). Both the MSE and spectral results were 
also observed in similar neural regions. Collectively, both 
types of analyses suggest long range and more “global” 
processing of auditory stimuli in musicians compared with 
tone language speakers or nonmusicians. Indeed, the ob-
servation that whenever there is a preponderance of low 
frequencies, the entropy at longer timescales is higher 
suggests that there is a close relationship between the 
MSE and PSD. We have noted elsewhere, however, that 
MSE is more dependent on higher-order relations of the 
signal that are not present in measures of spectral density 
(McIntosh et al., 2008). 
This global processing aligns with multiple neuroimag-

ing findings in which musicians have regional anatomical 
differences that could facilitate interhemispheric commu-
nication, as compared with nonmusicians. For example, 
musicians—relative to nonmusicians—have a larger ante-
rior corpus callosum, which is responsible for such inter-
hemispheric communications and connecting premotor, 
supplementary motor, and motor cortices (Schlaug, 
Jancke, Huang, & Steinmetz, 1995). Numerous studies 
have since found differences in the corpus callosum be-
tween musicians and nonmusicians (e.g., Steele, Bailey, 
Zatorre, & Penhune, 2013; Hyde et al., 2009; Schlaug et al., 
2009; Schlaug, Norton, Overy, & Winner, 2005), particularly 
in regions connecting motor areas (Schlaug et al., 2005, 
2009). These differences may be honed by the bimanual 
coordination related to playing an instrument (Moore, 
Schaefer, Bastin, Roberts, & Overy, 2014). 
Between-condition comparison of sample entropy re-

vealed that each group showed unique spatiotemporal 
distributions in their response to processing music and 
speech. Nonmusicians had greater BSV for speech pro-
cessing than music processing at fine timescales in several 
left hemisphere areas (e.g., anterior insula, centrolateral 

and dorsomedial pFC, frontal polar area). The spectral data 
revealed beta and gamma frequency activity when pro-
cessing speech (as compared with music) in similar neural 
regions as found in the MSE analysis. High-frequency activ-
ity has been associated with local perceptual processing 
(von Stein & Sarnthein, 2000) and is in accordance with 
the fine timescale (i.e., local) activation observed in our 
MSE analysis (Vakorin et al., 2011). 

The spectral data characterizing the nonmusician effect 
differed from the MSE analyses via the results for the 
music condition. Specifically, low-frequency (theta) acti-
vation was associated with music processing in many of 
the same regions that expressed higher frequencies when 
processing speech. This suggests that nonmusicians may 
utilize longer-range neural integration to process music 
(von Stein & Sarnthein, 2000). However, this difference 
was not  reflected in the  MSE  analysis (i.e., no increase 
in sample entropy at coarse timescales for the music 
condition), suggesting that nonmusicians do not have 
less information integration for music, relative to speech. 
This is plausible, as nonmusicians may have experience 
casually listening to/processing music,5 but not the precise 
pitch experience present in musicians or Cantonese 
speakers. 

In the MSE results for the Cantonese speakers, there 
was greater sample entropy for music as compared with 
speech—a difference that was primarily expressed at fine 
timescales in midline regions. Similarly, the spectral data 
showed that processing of music, as compared with 
speech, was associated with beta and gamma frequencies 
in similar neural regions as in the MSE results. Both the 
fine timescale and high-frequency activity suggest that the 
processing of music versus speech in Cantonese speakers 
relies on locally—rather than globally—distributed net-
works (Vakorin et al., 2011; von Stein & Sarnthein, 2000). 
There was also low-frequency (i.e., theta) activation associ-
ated with processing music, particularly in several right 
hemisphere areas (e.g., anterior insula, ventral temporal 
cortex, and fusiform gyrus), and with processing speech 
in the bilateral medial cortex. This low-frequency activity 
may suggest that Cantonese speakers utilize long-range 
neural integration to process music and speech (von Stein 
& Sarnthein, 2000). This does not align with either the 
local complexity supporting pitch processing, as suggested 
in the MSE data, or the low-frequency communication 
supporting such processing, as suggested in the high-
frequency spectral data. Clarifying the global versus local 
nature of neural networks supporting music and speech 
processing in Cantonese speakers could be further inves-
tigated in future studies. 

Comparisons to ERPs 

The EEG time series analyzed at present was previously 
examined in our previous ERP study (Hutka et al., 2015). 
MMNs (e.g., Näätänen, Paavilainen, Rinne, & Alho, 2007) 
were measured in these same groups to index early, 

Hutka et al. 2055 



automatic cortical discrimination of music and speech 
sounds. In that study, only musicians showed an enhanced 
MMN response to both music and speech, aligning with 
the current between-group effects. Our collective find-
ings suggest that musicians show greater automatic pro-
cessing (Hutka et al., 2015) and information integration 
(present study) supporting the automatic processing of 
both music and speech, as compared with Cantonese 
speakers and controls. 

However, we previously failed to find a difference in 
MMN amplitude between music and speech stimuli for 
any group (Hutka et al., 2015). In the current study, both 
sample entropy and spectral characteristics between 
conditions were observed in controls and Cantonese 
speakers. Furthermore, each group had a unique spatio-
temporal distribution in response to music and speech. 
Despite having lower sample entropy than musicians or 
nonmusicians across all conditions, Cantonese speakers 
showed greater sample entropy for music as compared 
with speech. These data suggest that Cantonese speakers 
have greater information integration supporting pitch 
processing, as compared with timbral processing. In 
contrast, MMNs did not reveal a difference in automatic 
processing of music versus speech in the Cantonese 
group (Hutka et al., 2015). The differences between the 
MMN findings and the present results suggest that the 
nonlinear analyses currently applied afforded additional, 
more fine-grained information about these between-
condition effects (see Hutka et al., 2013, for a discussion). 
That is, the averaging conducted to increase the signal-to-
noise ratio in ERP analyses may eliminate important signal 
variability that carries information about brain functioning 
(Hutka et al., 2013). 

Conclusions 

The present data suggest that the use of pitch for musi-
cians versus for tone language speakers is associated with 
different information processing capacities supporting 
the automatic processing of pitch. Furthermore, each 
group’s pitch processing was associated with a unique 
spatiotemporal distribution, suggesting that musicianship 
and tone language do not share processing resources for 
pitch,  but instead, use  different networks.  This  recruit-
ment of different networks may help explain how similar 
behavioral pitch discrimination benefits in musicians and 
Cantonese speakers are not reflected in mean activations 
in response to pitch (i.e., Hutka et al., 2015). Collectively, 
these results further elaborate the discussion of music 
and speech processing in the context of experience-
dependent plasticity. These data also serve as a proof of 
concept of the theoretical premise outlined in Hutka et al. 
(2013), namely, how applying a nonlinear approach to 
the study of the music–language association can advance 
our knowledge of each domain, as well as experience-
dependent plasticity in general. 
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Notes 

1. That is, BSV does not in itself measure changes in connec-
tivity; it simply measures the changes in dynamics associated 
with different connectivity patterns that might be the product 
of experienced-dependent plasticity. 
2. The 72-region parcellation scheme was meant to reduce 
the dimensionality of the source map to something more mean-
ingful than the 15,000 vertices generated by Brainstorm (Tadel 
et al., 2011). This specific parcellation scheme was used to 
maximize the definitional overlap of the regions with other re-
ported regions in human and macaque data. These regions 
were mapped based on maximally agreed upon boundaries in 
the literature (see Kötter & Wanke, 2005). 
3. Estimating sample entropy is based on nonlinear dynamics 
and employs a procedure called time delay embedding, for 
which we need to specify the embedding dimension. Time delay 
embedding is a critical step in the nonlinear analysis, but the 
choice of parameters is essentially based on heuristics. At the 
same time, Takens’ (1981) embedding theorem states that, for 
reconstructing macrocharacteristics of a dynamical system 
underlying observed time series (such as entropy), embedding 
dimension should be relatively large. We used a priori m = 5 for 
embedding dimension as a compromise between the require-
ments imposed by Takens’ theorem and the fact that our time 
series are not only finite, but also relatively short. 
4. The selection of this similarity criterion was guided by the 
simulations performed by Richman and Moorman (2000). Using 
a series of tests, they showed that the reconstructed values of 
sample entropy were close to the theoretical ones, when the 
tolerance parameter r was approaching 1, especially for rela-
tively short time series. 
5. Note that Bigand and Poulin-Charronnat (2006) discuss the 
large overlap in neural activity in musically trained and un-
trained listeners, in response to Western musical features 
(e.g., structure). On the basis of this evidence, one might pre-
dict that examining BSV in musicians versus untrained controls 
while listening to more complex musical excerpts might show a 
smaller BSV difference than one might initially anticipate. 
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