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Abstract 

■ Categorical judgments of otherwise identical phonemes are 
biased toward hearing words (i.e., “Ganong effect”) suggesting 
lexical context influences perception of even basic speech 
primitives. Lexical biasing could manifest via late stage postper-
ceptual mechanisms related to decision or, alternatively, top– 
down linguistic inference that acts on early perceptual coding. 
Here, we exploited the temporal sensitivity of EEG to resolve 
the spatiotemporal dynamics of these context-related influences 
on speech categorization. Listeners rapidly classified sounds 
from a /gI/-/kI/ gradient presented in opposing word–nonword 
contexts (GIFT–kift vs. giss–KISS), designed to bias perception 
toward lexical items. Phonetic perception shifted toward the 

direction of words, establishing a robust Ganong effect behav-
iorally. ERPs revealed a neural analog of lexical biasing emerging 
within ~200 msec. Source analyses uncovered a distributed 
neural network supporting the Ganong including middle 
temporal gyrus, inferior parietal lobe, and middle frontal cor-
tex. Yet, among Ganong-sensitive regions, only left middle 
temporal gyrus and inferior parietal lobe predicted behavioral 
susceptibility to lexical influence. Our findings confirm lexical 
status rapidly constrains sublexical categorical representations 
for speech within several hundred milliseconds but likely does 
so outside the purview of canonical auditory-sensory brain 
areas. ■ 

INTRODUCTION 

An important building block for language is the ability to 
transform sensory information into abstract linguistic rep-
resentations (Goldstone & Hendrickson, 2010). Speech 
sounds vary continuously across time, environments, 
speaker identities, and stimulus contexts, and yet, listeners 
easily parse the speech stream into discrete phonemes 
(Lotto & Holt, 2016; Phillips, 2001; Pisoni & Luce, 1987). 
The categorical perception (CP) of speech maps infinitely 
variable acoustic signals into discrete phonetic–linguistic 
representations on which the speech-language system 
can operate (Pisoni & Luce, 1987; Pisoni, 1973; Liberman, 
Cooper, Shankweiler, & Studdert-Kennedy, 1967). CP is 
indicated when gradually morphed speech sounds along 
a continuum are heard as belonging to one of a few discrete 
phonetic classes. Tokens labeled with different identities 
are said to cross the categorical boundary, a psychological 
border where listeners’ responses abruptly flips because of 
a perceptual warping of the stimulus space (i.e., compres-
sion of within-category sounds; Best & Goldstone, 2019; 
Goldstone, Steyvers, Spencer-Smith, & Kersten, 2000; 
Livingston, Andrews, & Harnad, 1998). 

One nebulous issue in speech perception concerns 
whether higher-level activation of lexical representations 
directly affects sublexical components (e.g., phoneme 
categories). On one extreme is the rigid view that, once 

established, internalized speech prototypes (i.e., equiva-
lence classes or category members) are invariant to super-
ficial stimulus manipulation or lexical context (Liberman, 
Harris, Hoffman, & Griffith, 1957). Under this model, cate-
gories are impervious to influences from surrounding 
information and sound elements that precede or follow 
an isolated stimulus cannot influence its categorization or 
location of the perceptual boundary. On the contrary, 
acoustic–phonetic categories—traditionally considered 
early or lower-level constructs of the speech signal—are 
in fact highly malleable to contextual variations (Holt & 
Lotto, 2010; Myers & Blumstein, 2008; Francis & Ciocca, 
2003; Norris, McQueen, & Cutler, 2003; Elman & McClelland, 
1988; Ganong, 1980; Pisoni, 1975). Moreover, the degree to 
which context influences the category identity of speech 
varies with language experience (Bidelman & Lee, 2015; 
Lively, Logan, & Pisoni, 1993; Kuhl, Williams, Lacerda, 
Stevens, & Lindblom, 1992). Consequently, it is now well-
established that phonetic categories are flexible and per-
ception of even individual speech features depends critically 
on the surrounding signal (Repp & Liberman, 1987). 
Context-dependent effects in CP are best illustrated by 

the so-called “Ganong effect” (Ganong, 1980).  The 
Ganong phenomenon occurs when listeners’ perceived 
category boundary of a word–nonword continuum of 
phonemes shifts (is biased) toward the lexical item. When 
perceiving a “da-ta” continuum, for example, English-
speaking listeners show a stark shift in their perceptual 
category boundary toward lexical items when one of the gra-
dient’s endpoints contains a real word (e.g., “DASH-tash”; 
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Ganong, 1980; Ganong & Zatorre, 1980). Similar interpre-
tive biasing can be induced via learning when listeners are 
exposed to new contexts that shape their perception of 
otherwise isolated sounds (Norris et al., 2003). Collectively, 
behavioral studies suggest that stimulus context expands 
the mental category for expected or behaviorally relevant 
stimuli (McMurray, Dennhardt, & Struck-Marcell, 2008). 
One interpretation of lexical effects is that they reflect 

direct linguistic influence on perceptual processes. 
Alternatively, another school of thought argues lexical con-
text effects are postperceptual and are therefore related to 
executive mechanisms (i.e., response selection, decision). 
Fox (1984) tested the interaction between lexical knowl-
edge and phonetic categorization during speech percep-
tion using Ganong-like stimuli. Lexical status did not 
influence phonetic categorization at shorter response 
latencies or when participants were given a response dead-
line, suggesting lexical context influences later stimulus 
selection rather than perceptual encoding, per se. This 
notion is supported by results from Pitt and Samuel (1993), 
who found the strength of lexical influences on perception 
of ambiguous sound tokens depended on their position in a 
word; lexical effects were weaker when tokens occurred to-
ward the beginning compared to the end of words. These 
data support “late stage” or “selection-based” models 
whereby the very formation of categories themselves only 
emerges at a late decision stage of the processing hierarchy 
(e.g., MERGE model; Norris, McQueen, & Cutler, 2000). 
Rather than acting at late stages, lexical biasing could 

instead manifest via top–down (and perhaps bi-directional) 
modulations of early perceptual processing with the lexical 
interface. Indeed, growing evidence from neuroimaging 
studies (Noe & Fischer-Baum, 2020; Gow, Segawa, Ahlfors, 
& Lin, 2008; Myers & Blumstein, 2008; van Linden, 
Stekelenburg, Tuomainen, & Vroomen, 2007) reaffirms 
such interactive, connectionist views of categorization 
(e.g., TRACE; McClelland & Elman, 1986). Employing 
fMRI with a Ganong task, Myers and Blumstein (2008) 
found that the placement of the phonetic boundary mod-
ulated activity both in perceptual (e.g., superior temporal 
gyrus [STG]), inferior parietal lobe [IPL]) and frontal 
executive brain areas (inferior frontal gyrus, ACC), with 
greater activity for ambiguous items near the boundary. 
The mere involvement of the STG strongly suggests that 
lexical shifts are not solely due to executive decision pro-
cesses but, at minimum, includes a perceptual component 
that either itself has direct access to lexical properties or is 
interactively reactivated to integrate phonetic and extra-
phonetic factors in placing the phonetic boundary (Noe & 
Fischer-Baum, 2020; Gow et al., 2008; Myers & Blumstein, 
2008). Although fMRI offers excellent spatial characteriza-
tion of potential lexical effects, it lacks the temporal pre-
cision necessary to resolve the underlying brain dynamics 
of category formation (Bidelman, Moreno, & Alain, 2013) 
and related lexical influences (Gow et al., 2008), both of 
which unfold within a few hundred milliseconds after 
speech onset (e.g., Mahmud, Yeasin, & Bidelman, 2020). 

Extending prior neuroimaging work (Gow et al., 2008; 
Myers & Blumstein, 2008), the aim of this study was to char-
acterize the spatiotemporal dynamics of context-dependent 
lexical influences on CP with the goal of establishing where 
and when speech categories are prone to Ganong-like 
biasing. We used EEG coupled with source reconstruction 
to assess the underlying neural bases of phoneme categori-
zation and its lexical modulation. Our task included word– 
nonword (GIFT–kift) and nonword-to-word (giss–KISS) 
acoustic gradients of an otherwise identical /gI/-/  kI/ 
acoustic–phonetic continuum designed to bias listeners’ 
perception toward the lexical item and shift their perceptual 
category boundary (Myers & Blumstein, 2008; Ganong, 
1980). Our findings confirm that lexical status rapidly 
(~200–300 msec) constrains sublexical category speech 
representations but further suggests this interactivity occurs 
outside canonical auditory-linguistic brain structures. 
Instead, among Ganong-sensitive brain regions, we find en-
gagement of a temporoparietal circuit (i.e., inferior parietal, 
middle temporal gyrus [MTG]) is critical to describing lis-
teners’ susceptibility to contextual biasing during category 
judgments. 

METHODS 

Participants 

Sixteen young adults (3 men, 13 women; age: M =24.5,  SD = 
12.9 years) were recruited from the University of Memphis 
student body.1 Sample size was based on several previous 
neuroimaging studies on context effects in CP (e.g., Gow 
et al., 2008; Myers & Blumstein, 2008). All exhibited normal 
hearing sensitivity confirmed via audiometric screening 
(i.e., < 25 dB HL, octave frequencies 250–8000 Hz). Each 
participant was strongly right-handed (74.8 ± 27.0% later-
ality index; Oldfield, 1971), had obtained a collegiate level 
of education (18.8 ± 2.7 years formal schooling), and was a 
native speaker of American English. Participants were con-
sidered nonmusicians (e.g., Mankel & Bidelman, 2018), 
having, on average, 3.25 ± 3.3 years of music training. All 
were paid for their time and gave informed consent in 
compliance with a protocol approved by the institutional 
review board at the University of Memphis. 

Speech Stimulus Continua 

Stimuli were adapted from Myers and Blumstein (2008). 
Speech tokens consisted of a /gI/ to /kI/ (i.e.,  “gih” to 
“kih”) stop-consonant continuum presented in two 
word/nonword contexts.2 Each continuum was constructed 
using eight equally spaced VOTs incrementing from 18 msec 
(/g/ percept) to 70 msec (/k/ percept; Figure 1). This other-
wise identical VOT continuum was used to create word-to-
nonword (GIFT–kift) and nonword-to-word (giss–KISS) 
gradients designed to bias listeners’ phonemic perception 
toward the lexical item (Figure 1B). This was achieved 
by splicing the appropriate aspiration (i.e.,  “-ft” for 
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GIFT–kift; “-ss” for giss–KISS) to the end of the other-
wise identical /gI/-/kI/ sounds (for details, see Myers & 
Blumstein, 2008). All tokens were 500 msec in duration 
and root-mean-square amplitude normalized. 

During EEG recording, listeners heard 120 trials of each 
individual token (per context) in which they labeled the 
sound with a binary response (“g” or “k”) as quickly and 
accurately as possible. Following, the ISI was jittered ran-
domly between 800 and 1000 msec (20-msec steps, uni-
form distribution) to avoid rhythmic entrainment of the 
EEG and anticipating subsequent stimuli. Block order for 
the GIFT–kift versus giss–KISS continua were randomized 
within and between participants. The auditory stimuli were 
delivered binaurally at 79 dB SPL through shielded insert 
earphones (ER-2; Etymotic Research) controlled by a 
TDT RP2 signal processor (Tucker Davis Technologies). 

EEG Recordings 

EEGs were recorded from 64 sintered Ag/AgCl electrodes 
at standard 10–10 scalp locations (Oostenveld & Praamstra, 
2001). Continuous data were digitized at 500 Hz (SynAmps 
RT amplifiers; Compumedics Neuroscan) using an online 
passband of DC-200 Hz. Electrodes placed on the outer 
canthi of the eyes and the superior and inferior orbit 
monitored ocular movements. Contact impedances were 
maintained < 10 kΩ. During acquisition, electrodes were 
referenced to an additional sensor placed ~ 1 cm posterior 
to Cz. Data were rereferenced off-line to the common 
average for analysis. Preprocessing was performed in 
BESA Research (v7.1; BESA, GmbH). Ocular artifacts 
(saccades and blinks) were corrected in the continuous 
EEG using PCA (Picton et al., 2000). Cleaned EEGs were 
then filtered (1–20 Hz), epoched (−200 to 800 msec), 
baselined to the prestimulus interval, and ensemble 
averaged resulting in 16 ERP waveforms per participant 
(8 tokens × 2 contexts). 

Behavioral Data Analysis 

Identification scores were fit with a sigmoid function P = 
1/[1+e−β1(x − β0)], where P is the proportion of trials iden-
tified as a given phoneme, x is the step number along the 
stimulus continuum, and β0 and β1 the location and slope 
of the logistic fit estimated using nonlinear least-squares 
regression. Comparing parameters between speech con-
texts revealed possible differences in the “steepness” 
(i.e., rate of change) and, more critically, the location of 
the categorical boundary as a function of speech context. 
A lexical bias (i.e., Ganong effect) is indicated when the 
location of the perceptual boundary (β0) in phoneme  
identification shifts dependent on the anchoring speech 
context (Myers & Blumstein, 2008; Ganong, 1980).  
Behavioral labeling speeds (i.e., RTs) were computed as 
listeners’ median response latency across trials for a given 
condition. RTs outside 250–2500 msec were deemed out-
liers (e.g., fast guesses, lapses of attention) and were ex-
cluded from the analysis (Bidelman et al., 2013; Bidelman 
& Walker, 2017). 

EEG Data Analysis 

ERP Sensor Responses 

From channel-level waveforms, we measured lexical bias 
effects in the speech ERPs by comparing scalp topographies 
at the ambiguous midpoint token (Tk4) evoked in the two 
different speech contexts (i.e., GIFT4 vs. KISS4). This token 
step is where lexical bias effects were most prominent 
behaviorally (see Figure 2). Topographic t tests were con-
ducted in EEGLAB (Delorme & Makeig, 2004). 

Source Analysis 

To estimate the underlying sources contributing to the lexi-
cal effect, we used Classical Low Resolution Electromagnetic 

Figure 1. Speech stimuli used to 
probe the neural basis of lexical 
effects on categorical speech 
processing. (A) Acoustic 
waveforms of the continuum 
(zoomed to 200 msec). Stimuli 
varied continuously in equidistant 
VOT steps to yield a morphed 
gradient from /gI/ to /kI/. (B) 
Spectrograms. The /gI/ to /kI/ 
continuum was presented in one 
of two word–nonword contexts 
(GIFT–kift and giss–KISS) such  
that, at any point along the 
acoustic gradient, the same stop 
consonant could be perceived 
more as a word (or nonword) 
depending on lexical bias from 
the continuum’s endpoint.  
Dotted lines, onset of voicing 
demarcating VOT duration. 
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Tomography Analysis Recursively Applied (CLARA; BESA 
(v7); Iordanov, Hoechstetter, Berg, Paul-Jordanov, & 
Scherg, 2014) to estimate the neuronal current density 
underlying the scalp ERPs (e.g., Bidelman, 2018; Alain, 
Arsenault, Garami, Bidelman, & Snyder, 2017). CLARA 
models the inverse solution as a large collection of elemen-
tary dipoles distributed over nodes on a mesh of the cortical 
volume. The algorithm estimates the total variance of the 
scalp data and applies a smoothness constraint to ensure 
current changes minimally between adjacent brain regions 
(Michel et al., 2004; Picton et al., 1999). CLARA renders more 
focal source images by iteratively reducing the source space 
during repeated estimations. On each iteration (× 2), a 
spatially smoothed LORETA solution (Pascual-Marqui, 
Esslen, Kochi, & Lehmann, 2002) was recomputed and 
voxels  below a  1% max amplitude threshold were 
removed. This provided a spatial weighting term for each 
voxel on the subsequent step. Two iterations were used 
with a voxel size of 7 mm in Talairach space and regulari-
zation (parameter accounting for noise) set at 0.01% 
singular value decomposition. Source activations were 
visualized on BESA’s adult brain template (Richards, 
Sanchez, Phillips-Meek, & Xie, 2016). 
To quantify the time course of source activations, we 

seeded discrete dipoles within the activation centroids 

identified in the CLARA volume images at a latency of 
286 msec, where scalp data showed maximally lexical effects 
(see Figure 4A). CLARA localized activity to five major foci 
including MTG, inferior parietal lobe (IPL), and middle 
frontal gyrus (MFG) in left hemisphere, and precentral gyrus 
(PrCG) and insular cortex (IC) of right hemisphere (see 
Figure 4D). Dipole time courses represent the estimated 
current within each regional source. We then used this 
5-dipole model to create a virtual source montage to trans-
form each participant’s scalp potentials (sensor-level record-
ings) into source space (Scherg, Berg, Nakasato, & Beniczky, 
2019; Scherg, Ille, Bornfleth, & Berg, 2002). This digital 
remontaging applied a spatial filter to all electrodes (defined 
by the foci of our dipole configuration) to transform the 
electrode recordings to a reduced set of source signals re-
flecting the neuronal current (in units nAm) as seen within 
each anatomical ROI (Bidelman, 2018; Bidelman, Davis, & 
Pridgen, 2018). Critically, we fit individual dipole orienta-
tions to each participant’s own data (anatomical locations 
remained fixed) to maximize the explained variance of 
the model at the individual subject level. The model pro-
vided a good fit to the grand averaged scalp data (good-
ness of fit, entire epoch window = 75%), confirming the 
ERPs could be described by a restricted number of 
sources. 

Figure 2. Lexical context biases 
the perceptual categorization 
of speech. (A) Psychometric 
identification functions show a 
shift in the perceptual boundary 
toward lexical items. Listeners 
more frequently reported /g/ 
responses in the GIFT–kift 
continuum and more /k/ 
responses for the giss–KISS 
context, confirming perception 
for otherwise identical stop 
consonants is biased toward 
hearing words. (B) RTs. Labeling 
speeds are faster for endpoint 
versus midpoint tokens of the 
continuum consistent with 
category ambiguity near the 
midpoint of the continuum 
(Pisoni & Tash, 1974). (C) 
Critically, the location of the 
perceptual boundary (i.e., β0) 
shifts depending on the lexical 
context. (D) Identification 
performance differs maximally 
between contexts near the 
midpoint of the continua 
(i.e., Tk 4). (E) Comparison 
of boundary locations (β0) for 
the GIFT–kift versus giss–KISS 
continua. The diagonal 
represents the case of an 
identical perceptual boundary 
between contexts. Boundaries shift leftward for giss–KISS compared to GIFT–kift, reflecting a higher precedence of /k/ responses in that context 
(vice versa for the other context). Error bars = ±1 SEM; ***p < .0001. 
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Brain–Behavior Correspondence 

From the source waveform time courses, we measured 
peak amplitudes within the 200- to 300-msec time window, 
where lexical effects were prominent in raw EEG data (see 
Figure 4A, B). We then regressed source amplitudes (for 
each ROI) with listeners’ behavioral Ganong effect, com-
puted as the magnitude of shift in their perceptual bound-
ary between speech contexts (i.e., data in Figure 2C). This 
allowed us to assess the behavioral relevance of each brain 
ROI and how context-dependent changes in neural activity 
(i.e., “neural Ganong” effect) relate to lexical biases in CP 
measured behaviorally. 

Statistics 

We analyzed the data using mixed-model ANOVAs in R (R 
Core team, 2018; lmer4 package) with fixed effects of token 
(eight levels) and speech context (two levels). Participants 
served as a random effect. Multiple comparisons were cor-
rected using Tukey–Kramer adjustments. Brain–behavior 
relations were assessed using robust regression (bisquare 
weighting) performed using the fitlm function in MATLAB 
2020a (The MathWorks, Inc.). Effect sizes are reported 
for omnibus ANOVAs using Cohen’s d (Cohen, 1988), for 
paired t tests using the formula described in Dunlap, 
Cortina, Vaslow, and Burke (1996), and as Pearson’s r for 
correlations. 

RESULTS 

Behavioral Data 

Behavioral identification functions are shown for the two 
speech contexts in Figure 2A. Listeners more frequently re-
ported /g/ responses in the GIFT–kift continuum and more 
/k/ responses for the giss–KISS context, confirming that per-
ception for otherwise identical stop consonants is biased 
toward hearing words. The perceptual boundary location 
depended strongly on context, t(15) = 4.82, p < .0001; 
d =  0.961 (Figure 2C and 2E). Consistent with prior stud-
ies (Noe & Fischer-Baum, 2020; Myers & Blumstein, 2008; 
Ganong, 1980), context-dependent effects in CP where 
most evident near the ambiguous midpoint of the con-
tinuum (Tk 4), where listeners’ identification abruptly 
shifted phoneme categories, t(15) = 6.00, p < .0001; 
d = 2.19 (Figure 2D). Ganong shifts also varied across 
individuals (e.g., Lam, Xie, Tessmer, & Chandrasekaran, 
2017), with some listeners showing strong influence to 
lexical bias and others showing little to no changes in 
perception with speech context (Figure 3). 

Speech labeling speeds were modulated by context, F(1, 
225) = 5.15, p = .024; d = 0.270, and token, F(7, 225) = 
2.14, p = .0408; d = 0.370, (Figure 2B). Identification was 
faster overall when categorizing tokens in the giss–KISS 
context ( p = .024). The main effect of token was attrib-
utable to a slowing of RTs near the midpoints of each con-
tinua (i.e., mean[1278] vs. mean[45] contrast: t(225) = 

3.14, p = .0019). Such inverted V shape in labeling speeds, 
although not prominent in these data, have been attributed 
to more ambiguity in decision nearer the perceptual 
boundary (Bidelman & Walker, 2017; Pisoni & Tash, 
1974). Collectively, these behavioral results suggest that 
lexical information (words) biases listeners’ categorization 
of otherwise identical phonetic features; even basic pho-
neme perception is latticed by the surrounding lexical 
context of the speech signal. 

EEG Data 

Scalp ERPs are shown at electrode Cz in Figure 4. To quan-
tify the “neural Ganong” effect, we contrasted ERPs to 
tokens at the perceptual boundary (i.e., Tk 4; e.g., Myers 
& Blumstein, 2008), where lexical bias was strongest behav-
iorally (see Figure 2). Difference waves computed between 
midpoint tokens evoked during giss–KISS versus GIFT–kift 
continua revealed context-dependent modulations in the 
time window between 200–300 msec, t(14) = 3.03, p = 
.009; d = 1.15 (Figure 4A and 4B).3 That is, despite identical 
acoustic information, phonemes were processed differen-
tially depending on the word context they carried. The 
topography of the neural Ganong was broadly distributed 
over the scalp, spanning frontal, temporal, and parietal 
electrodes (Figure 4C). 
ERP differences between ki(ss) and gi(ft) could be be-

cause of lexical biasing of the initial phoneme or the fact 
that boundary tokens carry different word endings. That 
is, for stimuli near the category boundary, one token is a real 
word whereas the other is equivocal in lexical status. To rule 
out this possibility, after Myers and Blumstein (2008), we 

Figure 3. Lexical influences on CP are subject to individual differences. 
Identification functions for representative listeners (n = 3) who showed 
the strongest (A) and weakest (B) influence of lexical context on speech 
categorization. High influence listeners’ perceptual boundary shifts 
dramatically with context, whereas low influence listeners show little 
change in perception with lexical context. 
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Figure 4. Neuroelectric brain activity reveals evidence of lexical biasing on speech categories. (A) ERP time course at the Cz electrode reflecting 
difference waves between Tk 4 responses when presented in GIFT–kift versus giss–KISS contexts (i.e., lexical effect contrast) and words (gift–kiss) 
versus nonwords (giss-kift; i.e., word contrast). ▼ = speech stimulus onset. A running t test (Guthrie & Buchwald, 1991) reveals lexical biasing 
between 200 and 300 msec ( p < .05; shaded segment). (B) Mean ERP amplitude at Cz (200–300 msec) differs from 0 for the Ganong (but not word 
control) contrast indicating differentiation of identical speech tokens dependent on lexical context. (C) Topographic distribution of the Ganong 
effect across the scalp. Statistical maps (paired t test, p < .01, FDR-corrected; Benjamini & Hochberg, 1995) contrasting Tk4 responses in the two 
lexical contexts. No clusters emerged in the word–nonword contrast suggest that Ganong biasing is not because of the word status of stimuli, per se. 
(D) Brain volumes show CLARA (Iordanov et al., 2014) distributed source activation maps underlying lexical bias during speech categorization. Maps 
were rendered at latency of 286 msec, where the effect was most prominent at the scalp (e.g., Figure 4A). Functional data are overlaid on an adult 
template brain (Richards et al., 2016). Error bars = ±1 SEM; **p < .01. 

Figure 5. Lexical bias in CP is driven by engagement of MTG and IPL in left hemisphere. Cartoon heads illustrate the location of the dipole sources 
underlying the neural Ganong effect. Individual scatters show the relation between neural and behavioral Ganong effect measured from each ROI 
(shading, p < .05). Solid regression lines, significant brain–behavior relation; dotted lines, n.s. Flanking curved lines reflect 95% CIs. Of the active 
regions, only left MTG and IPL correspond with listeners’ behavioral bias. LH/RH = left/right hemisphere. *p < .05; **p < .01. 
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compared continuum endpoints that were unequivocally 
perceived as real words (endpoints perceived as “gift” and 
“kiss”) with continuum endpoints that were unequivocally 
perceived as nonwords (endpoints perceived as “giss” 
and “kift”). These control analyses revealed no significant 
channel clusters suggesting Ganong differences were not 
because of the “word status” of the stimuli, per se (Myers 
& Blumstein, 2008). Similarly, ERP amplitudes for word 
versus nonword difference waves did not differ from 0 in 
the same time window that showed Ganong lexical biasing 
in the experimental conditions, t(14) = 1.36, p = .20.  

Source analysis of the ERPs exposed neural activations 
coding lexical bias in CP within five major foci among the 
auditory-linguistic-motor loop (e.g., Rauschecker & Scott, 
2009; Hickok & Poeppel, 2007), including MTG, IPL (prox-
imal to supramarginal gyrus [SMG]), and MFG in left hemi-
sphere, and PrCG and IC in right hemisphere (Figure 4D). 
For each participant, we extracted the time course of 
source activity from dipoles seeded at the centroids of 
these ROIs. We then measured and regressed the peak 
activation within each ROI (200- to 300-msec analysis 
window; see Figure 4B)—reflecting the magnitude of 
“neural Ganong”—against listeners’ behavioral Ganong 
(i.e., magnitude of perceptual boundary shift; Figure 2C). 
These brain–behavior correlations revealed strong associa-
tions between left MTG and left IPL activity and behavioral 
bias. The negative association suggests that larger (more 
positive) change in ERP was associated with smaller mag-
nitude shifts in identification functions. These findings 
suggest that context-dependent modulations within a 
restricted temporo-parietal circuit were most inducive 
to listeners’ susceptibility to lexical influences. 

DISCUSSION 

By measuring neuroelectric brain activity during rapid 
speech categorization tasks, our data reveal strong lexical 
bias in phonetic processing; perception for otherwise iden-
tical speech phonemes is attracted toward the direction of 
words, shifting listeners’ categorical boundary dependent 
on surrounding speech context. We show a neural analog 
of lexical biasing emerging within ∼200 msec from brain 
activity localized to a distributed, bilateral temporoparietal 
network including MTG and IPL. Our findings confirm that 
when perceiving speech, lexical status rapidly constrains 
sublexical representations to their category membership 
within several hundred milliseconds, establishing a direct 
linguistic influence on early speech processing. 

Decoding speech and lexical biasing could be realized 
via phonetic “feature detectors” (Eimas & Corbit, 1973) 
that occupy and are differentially sensitive to various seg-
ments of the acoustic-linguistic space. Indeed, Ganong-like 
displacements in perception we observe could occur if lin-
guistic status moves the category boundary toward the 
most likely lexical candidate. Similarly, nonlinear dynamical 
models of perception posit that lexical items more strongly 
activate perceptual “attractor states,” which pull auditory 

percepts toward word items (Tuller, Case, Ding, & Kelso, 
1994). Under this interpretation, the brain might differen-
tially warp the perceptual space such that even the early 
acoustic–phonetic analysis of speech is continually an-
chored to a lexical representation (Liberman, Isenberg, & 
Rakerd, 1981; Remez, Rubin, Pisoni, & Carrell, 1981). 
Considerable debate persists as to whether lexical effects 

in spoken word recognition result from feedback or feedfor-
ward processes (Gow et al., 2008; Myers & Blumstein, 2008; 
Samuel & Pitt, 2003; Norris et al., 2000; Pitt, 1995). Ganong 
shifts could occur if lexical knowledge exerts top–down 
influences to directly affect perceptual states. Under these 
frameworks, lexical-based modulation of auditory-sensory 
brain areas (i.e., STG; Myers & Blumstein, 2008; van 
Linden et al., 2007) could result from top–down input 
from higher levels associated with word forms (e.g., SMG, 
MTG). Alternatively, a purely feedforward architecture 
(Norris et al., 2000) posits that lexical and phonetic outputs 
combine and interact at later postperceptual stages of 
processing that are intrinsic to overt perceptual tasks 
(for illustration of these diametric models, see Figure 1 
of Gow et al., 2008; Figure 7: Myers & Blumstein, 2008). 
In attempts to resolve these conflicting models, Gow 
et al. (2008) used functional connectivity analyses applied 
to magnetoencephalography (MEG) data and showed that 
causal neural signaling directed from left SMG to “lower-
level” areas (e.g., STG) modulates sensory representations 
for speech within a latency of 280–480 msec (Gow et al., 
2008). The top–down nature of their effects strongly favored 
a feedback, perceptual account of the Ganong whereby 
lexical representations influence the earlier encoding of 
sublexical speech features (e.g., Noe & Fischer-Baum, 
2020; Myers & Blumstein, 2008; van Linden et al., 2007). 
Our EEG findings closely agree with MEG data by dem-

onstrating a neural analog of Ganong biasing that unfolds 
early in the chronometry of speech perception. We ob-
served lexical modulation of speech ERPs beginning 
∼200 msec after sound onset and no later than 300 msec. 
The early time window of these effects aligns roughly with 
the P2 wave of the auditory ERPs, a component that is 
highly sensitive to perceptual object formation, category 
structure (Bidelman et al.,  2013, 2020; Bidelman & 
Walker, 2017; Liebenthal et al., 2010), and context effects 
in speech identification (Bidelman & Lee, 2015).4 Two re-
cent EEG studies using Ganong (Noe & Fischer-Baum, 
2020) and cross-modal priming (Getz & Toscano, 2019) 
paradigms suggest even earlier lexical effects in the time-
frame of the N1 (75–175 msec; Noe & Fischer-Baum, 
2020; Getz & Toscano, 2019). Noe and Fischer-Baum 
(2020), for example, concluded the early nature of their 
lexical response at N1 is unlikely to be modulated by 
top–down effects. Discrepancies between studies as to 
the time course of lexical effects is unclear but might be 
attributable to methodological differences.5 Categorical 
effects at N1 have been equivocal in the literature (cf. Noe 
& Fischer-Baum, 2020; Getz & Toscano, 2019; Bidelman 
et al., 2013; Toscano, McMurray, Dennhardt, & Luck, 2010; 
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Sharma & Dorman, 1999). Moreover, previous studies have 
not adjudicated the underlying sources that contribute to 
apparent scalp N1 effects. This is important as the N1 wave 
is composed of sources beyond the supratemporal plane 
including frontal lobes and IPL (Picton et al.,  1999; 
Woods, 1995; Knight, Hillyard, Woods, & Neville, 1980), 
areas highly sensitive to lexical influences. Although our 
data support notions for an early time course of lexical 
effects (Noe & Fischer-Baum, 2020; Toscano, Anderson, 
Fabiani, Gratton, & Garnsey, 2018), they also suggest more 
parallel/iterative influences on perception. 
Our data are more consistent with previous source-level 

MEG findings that demonstrate Ganong-related modula-
tions around 220 msec (Gow et al., 2008). Our source anal-
ysis uncovered a Ganong neural circuit spanning five nodes 
including MTG, IPL, and MFG in the left hemisphere and 
PrCG, IC in the right hemisphere. The engagement of 
frontal brain areas (MFG, IC) is consistent with the notion 
that lexical effects partly evoke postperceptual, executive 
processes (Norris et al., 2000). The involvement of IC is per-
haps also expected in light of prior imaging work; bilateral 
inferior frontal activation is particularly evident for speech 
contrasts that are acoustically ambiguous (Feng, Gan, Wan, 
Wong, & Chandrasekaran, 2018; Bidelman & Dexter, 2015; 
Guediche, Salvata, & Blumstein, 2013) and under condi-
tions of increased lexical uncertainty (Bidelman & Walker, 
2019; Luthra, Guediche, Blumstein, & Myers, 2019) that 
place higher demands on attention (Bouton et al., 2018). 
Indeed, resolving phoneme ambiguity (as in the Ganong) 
may be one of the first processes to come on-line before 
the decoding of specific lexical features (Gwilliams, Linzen, 
Poeppel, & Marantz, 2018). This may account for the early 
time course of our neural effects. 
Notable among the Ganong circuit were nodes in left 

SMG and MTG. Critically, these regions were the only 
two areas associated with behavior illustrating their 
important role in the lexical effect. MTG forms a major 
component of the ventral speech-language pathway that 
performs sound-to-meaning inference and acts as a lexical 
interface linking phonological and semantic information 
(Hickok & Poeppel, 2004, 2007). MTG is also associated 
with accessing word meaning (Acheson & Hagoort, 2013), 
a likely operation  in  our Ganong task when ambiguous 
phonemes are perceptually (re)interpreted as words. 
Relatedly, left IPL and adjacent SMG are strongly recruited 
during auditory phoneme sound categorization (Luthra, 
Correia, Kleinschmidt, Mesite, & Myers, in press; Desai, 
Liebenthal, Waldron, & Binder, 2008; Gow et al., 2008), 
suggesting their role in phonological coding (Sliwinska, 
Khadilkar, Campbell-Ratcliffe, Quevenco, & Devlin, 2012). 
Parietal engagement is especially prominent when speech 
items are more perceptually confusable (Feng et al., 2018) 
or require added lexical readout as in Ganong paradigms 
(Oberfeld & Klöckner-Nowotny, 2016) and may serve as 
the sensory-motor interface for speech (Hickok, Okada, 
& Serences, 2009; Hickok & Poeppel, 2000).6 Moreover, 
using machine learning to decode full brain EEG, we have 

recently shown that left SMG and related outputs from 
parietal cortex are among the most salient brain areas that 
code for category decisions (Al-Fahad, Yeasin, & Bidelman, 
2020; Mahmud et al., 2020). Similar results were obtained 
in a multivariate pattern decoding analysis of Luthra et al. 
(in press),  who showed left parietal (SMG)  and right  
temporal (MTG) regions were among the most informative 
for describing moment-to-moment variability in categori-
zation. In addition, the link between MTG and PrCG im-
plied in our data points to a pathway between the neural 
substrates that map sounds to meaning and sensorimotor 
regions that execute motor commands (Al-Fahad et al., 
2020; Du, Buchsbaum, Grady, & Alain, 2014). Still, the 
early time course of these neural effects (∼250 msec) 
occurs well before listeners’ behavioral RTs (cf. Figure 2B 
vs. Figure 4), suggesting these mechanisms operate at an 
early (pre)perceptual level. These findings lead us to infer 
that rapid (200–300 msec) context-dependent modula-
tions within a restricted temporo-parietal circuit are most 
inducive to describing the degree to which listeners are 
susceptible to lexical influences during speech labeling. 

Notably absent from our Ganong circuit—identified via 
differences waves—was canonical auditory-linguistic brain 
regions (e.g., STG). Although somewhat unexpected, 
these data agree with previous fMRI results using a nearly 
identical Giss–Kiss continuum (Myers & Blumstein, 2008). 
Indeed, Myers and Blumstein (2008) reported that, for 
stimulus comparisons at the boundary of a Giss–Kiss gradient 
(Tk4, as used here), there was strong IPL but no Ganong-
related differences in several brain areas previously shown 
to be sensitive to phonetic category structure including 
STG and inferior frontal gyrus; STG activation was, how-
ever, observed for the boundary condition in a Gift–Kift 
continuum, suggesting the extent of cortex sensitive to 
lexical effects depends on the direction and where along 
the continuum the effect is quantified.7 STG activity is 
greater when stimuli are maximally shifted from their 
VOT-matched counterparts (Myers & Blumstein, 2008). 
Although we observe a measurable Ganong effect, it is 
possible that stronger STG differentiation would have 
been observed in our EEG data with more salient lexical 
biasing stimuli (e.g., vowel sounds which are inherently 
more category ambiguous; Ganong, 1980). Still, the fact 
that correlations between neural and behavioral Ganong 
occurred in areas beyond canonical auditory-sensory 
cortex (e.g., STG) suggests that high-order, top–down 
mechanisms drive or at least dominate lexical biasing 
(Gow et al., 2008) rather than auditory temporal cortex, 
per se. Although they do so rapidly, the engagement of a 
temporo-parietal circuit outside canonical auditory areas 
(and negative brain–behavior correlations) further im-
plies our lexical effects might be related to decision, 
attention, or executive control processes. Indeed, IPL is 
heavily involved in choice decision making, especially 
during uncertainty ( Vickery & Jiang, 2009). This could 
explain the strong involvement of this region when clas-
sifying ambiguous speech in our task. While we cannot 
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rule out such explanations, the early latency of neural ef-
fects (200–300 msec), which occur several hundred mil-
liseconds before listeners’ RT decisions, perhaps argues 
against a straightforward response-selection account of 
the data. Alternatively, rather than a binary feedforward or 
feedback model of the lexical effect (Gow et al., 2008), it is 
possible the formation of speech categories operates in 
near parallel within lower-order (sensory) and higher-order 
(cognitive-control) brain structures (Mahmud et al., 2020; 
Toscano et al., 2018). Our data are broadly consistent with 
such notions. Category representations also need not be 
isomorphic across the brain. Category formation might 
reflect a cascade of events where speech units are rein-
forced and further discretized by a recontact of acoustic– 
phonetic with lexical representations (Mahmud et al., 
2020; Myers & Blumstein, 2008). 

Our data are best cast in terms of interactive rather than 
serial frameworks of speech perception as in the TRACE 
model of spoken word recognition (McClelland & Elman, 
1986). As confirmed empirically (Noe & Fischer-Baum, 
2020;  Lam et  al.,  2017;  Gow et  al.,  2008;  Myers  & 
Blumstein, 2008; Ganong, 1980), these models predict 
stronger lexical biasing when speech sounds carry ambiguity. 
Indeed, neural correlates of the Ganong effect were most 
evident at the midpoint of our speech continua, where word 
influences exert their strongest effect. The very nature of 
TRACE is that activation traverses from one level to the next 
before computations at any one stage are complete 
(McClelland & Elman, 1986). Indeed, available evidence 
coupled with present results suggest that word recognition 
could involve simultaneous activation of both continuous 
acoustic cues and phonological categories (Toscano et al., 
2018). It is also possible that the acoustic–phonetic conver-
sion and postperceptual phonetic decision both localize to 
the same brain areas (Gow et al., 2008, p.621). Nevertheless, 
our data show that the acoustic–phonetic encoding of 
2speech is rapidly subject to linguistic influences within 
several hundred milliseconds. While the early time course 
implies a stage of perceptual processing, we find that 
lexical effects occur strongest outside the purview of canon-
ical auditory-linguistic brain areas via a restricted tem-
poroparietal circuit. 
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encourages all authors to consider gender balance explicitly 
when selecting which articles to cite and gives them the 
opportunity to report their article’s gender citation balance. 

Notes 

1. EEG was not recorded from one participant due to a tech-
nical error resulting in a final sample size of n = 15 for the neu-
ral data (behavioral data were unaffected). 
2. Our task blocks stimuli by continuum. One concern is that 
blocking might set up an expectation such that, upon hearing 
the initial stop consonant, listeners already have a category 
structure in mind, biasing their response toward the word 
end of the continuum. Thus, listeners might “preload” their re-
sponse, waiting to hear the completion of the word before in-
terpreting the onset consonant as a “g” vs. “k.” Our use of 
token randomization within each continuum helps prevent 
such expectancies. Lexical effects are also still observable when 
stimuli  are fully randomized within and across contexts 
(Ganong, 1980). Moreover, the early time course of our neural 
Ganong effects (see Figure 4) suggests the brain is already mak-
ing predictions on lexical status prior to the completion of 
word endings. Similarly, if listeners know they are in a “gift-kift” 
block, for example, they may shift their phonetic category 
boundary more globally such that processing the end of the 
word (–ift) is no longer necessary. However, one piece of evi-
dence that such global biasing did not occur is that RT speeds 
were similar for word versus nonword Tk1/Tk8 endpoint to-
kens (see Figure 2B). Global biasing would be expected to im-
prove decision speeds for tokens heard in a word context. 
3. The sign of the difference waveform crucially depends on the 
order of subtraction (much like an MMN), rendering the direction 
of the wave somewhat arbitrary. Consequently, we favor an inter-
pretation impartial to direction that implies that because the 
change/difference in response magnitude varies across continua, 
it is differential neural activity that codes the lexical effect. 
4. Whether the 200- to 300-msec modulation functionally 
reflects a late of P2 or early P3 response is unknown. P3 would 
be more expected in oddball-type paradigms (not used here) but 
is observable in speech identification tasks although later in time 
(> 300–400 msec; Bidelman & Alain, 2015; Toscano et al., 2010). 
A similar “post-P2” wave (180–320 msec) has been reported dur-
ing speech categorization (Bidelman & Alain, 2015; Bidelman 
et al., 2013), which varied with perceptual (rather) than acoustic 
classification. This response could represent an integration or 
reconciliation of the input with  a phonetic memory template  
(Bidelman, Bush, & Boudreaux, 2020; Bidelman & Alain, 2015) 
and/or attentional reorienting during stimulus evaluation 
(Knight, Scabini, Woods, & Clayworth, 1989). In support of this 
functional interpretation, the modulation is observed when clas-
sifying speech under higher levels of uncertainty, for example, 
when identifying speech in noise (Bidelman et al., 2020). 
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5. Both N1 studies (Noe & Fischer-Baum, 2020; Getz & 
Toscano, 2019) used average mastoid reference recordings, 
which can inflate and bias neural effects to frontal electrodes 
(Yao et al., 2005) where their ERPs were quantified. Here, we 
used average reference data (and source imaging), which pro-
vides a  less  biased and unmixed view of  neural  activity.  
Another notable difference in Noe and Fischer-Baum (2020) is 
their use of single trials (n = 38,491 observations) in the statisti-
cal analysis to detect lexical effects at N1. Although indepen-
dence assumptions of using such large quantities of correlated 
trial-wise EEG might be debatable, such analyses might be more 
sensitive to detecting earlier lexical effects than the subject-wise 
approach used here. 
6. The basis of the negative correlation between “neural” and 
behavioral” Ganong is not entirely clear; positive associations 
are more easily hypothesized. Speculatively, the negative rela-
tion could be related to a lexical ambiguity interpretation. Thus, 
the negative correlation we find between IPL and MTG and 
behavioral Ganong shifts (Figure 5) might occur if larger degrees 
of ambiguity between speech sounds (evoking larger ERP differ-
ences waves) reduces lexical certainty. This would tend to re-
duce the magnitude of the perceptual lexical effect as seen 
behaviorally. 
7. Myers and Blumstein (2008, p. 283) reported strong clusters 
of lexically sensitive cortex in canonical auditory areas including 
STG for boundary stimulus comparisons in their Gift–Kift contin-
uum. In that study, the boundary condition was defined based 
on the perceptual location within each continuum (i.e., Tk 5 for 
Gift–Kift; Tk 4 for Giss–Kiss). Here, we compared activation 
patterns solely at the physically identical Tk 4 stimulus (where 
perceptual lexical effects were maximal; Figure 2). 
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