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a b s t r a c t 

The brain transforms continuous acoustic events into discrete category representations to downsample the speech 

signal for our perceptual-cognitive systems. Such phonetic categories are highly malleable, and their percepts can 

change depending on surrounding stimulus context. Previous work suggests these acoustic-phonetic mapping and 

perceptual warping of speech emerge in the brain no earlier than auditory cortex. Here, we examined whether 

these auditory-category phenomena inherent to speech perception occur even earlier in the human brain, at 

the level of auditory brainstem. We recorded speech-evoked frequency following responses (FFRs) during a task 

designed to induce more/less warping of listeners’ perceptual categories depending on stimulus presentation order 

of a speech continuum (random, forward, backward directions). We used a novel clustered stimulus paradigm 

to rapidly record the high trial counts needed for FFRs concurrent with active behavioral tasks. We found serial 

stimulus order caused perceptual shifts (hysteresis) near listeners’ category boundary confirming identical speech 

tokens are perceived differentially depending on stimulus context. Critically, we further show neural FFRs during 

active (but not passive) listening are enhanced for prototypical vs. category-ambiguous tokens and are biased in 

the direction of listeners’ phonetic label even for acoustically-identical speech stimuli. These findings were not 

observed in the stimulus acoustics nor model FFR responses generated via a computational model of cochlear and 

auditory nerve transduction, confirming a central origin to the effects. Our data reveal FFRs carry category-level 

information and suggest top-down processing actively shapes the neural encoding and categorization of speech 

at subcortical levels. These findings suggest the acoustic-phonetic mapping and perceptual warping in speech 

perception occur surprisingly early along the auditory neuroaxis, which might aid understanding by reducing 

ambiguity inherent to the speech signal. 
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. Introduction 

To effectively utilize speech, individuals must convert continuous
timuli in the external world to phonetic category units ( Goldstone and
endrickson, 2010 ). In continuous speech, the precise acoustic char-
cteristics of phonemes vary depending on the speaker (e.g., sex, ac-
ent) ( Sumner, 2011 ), surrounding coarticulation ( Beddor et al., 2002 ),
nd background noise ( Bidelman, 2016 ; Billings et al., 2009 ; Carter and
idelman, 2021 ). Categorization allows this variation to exist without
indering the utility of speech as a mode of communication. One open
uestion in categorization is whether its driving force lies in neuro-
hysiological constraints of the sensory system (i.e., bottom-up coding
f sound) ( Kuhl, 1986 ; Kuhl and Miller, 1975 ) or if higher-order lan-
uage and memory regions modulate categorical speech percepts in a
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op-down manner ( Bidelman et al., 2021 ; Carter and Bidelman, 2021 ;
anong and Zatorre, 1980 ; Kuhl, 1986 ; Kuhl and Miller, 1975 ). If top-
own modulations of early speech representations do occur, then how
ar down the auditory system are these perceptual influences exerted? 

Typically, when assessing categorization, signals are presented to
isteners who are asked to identify the sound as a member of a set of
iscrete categories. Their behavioral responses can be represented as a
sychometric function, which can be quantified by its slope and its cate-
orical boundary. A steeper slope indicates the perceptual change from
ne category to the next happens more rapidly than if the slope was
hallower and thus indexes the strength of categorical hearing across
he continuum ( Bidelman, 2015a ; Strouse et al., 1998 ; Xu et al., 2006a ).
he categorical boundary indicates the point at which the psychomet-
ic function crosses 50% identification, marking the stimulus location
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here the category shifts from one percept to another ( Altmann et al.,
014 ; Ganong III and Zatorre, 1980 ). Additionally, one can measure how
apidly a listener labels each token via reaction time (RT). RTs demon-
trate the speed of processing, which increases (i.e., slows down) during
ore ambiguous or degraded tokens and decreases (i.e., speeds up) dur-

ng more prototypical tokens, often yielding an inverted U shape when
lotting RTs across the continua ( Pisoni and Tash, 1974 ). 

The categorical perception of speech is usually assessed by randomiz-
ng the presentation of stimuli from a graded acoustic continuum. When
resenting stimuli in sequential order (e.g., high-to-low first formant
requency [F1]), rather than a random order, the categorical bound-
ry is modified due to short-term sequencing effects ( Diehl et al., 1978 ;
ealy and Repp, 1982 ). Such perceptual shifts may reflect a persever-
tion of the prior perception (i.e., hysteresis) or changing perception
o the other category earlier than anticipated (i.e., enhanced contrast)
 Tuller et al., 1994 ). These types of dynamics in perception suggest
he brain’s ongoing sorting of incoming acoustics into categorical pho-
etic representations is actively modulated during perception. Whether
arping is due to top-down ( Bathellier et al., 2012 ; Carter et al., 2022 ;
uller et al., 2008 ) vs. bottom-up (e.g., adaptation of “phonetic feature
etectors ”) ( Eimas and Corbit, 1973 ) mechanisms is debatable. Presum-
bly, such effects are driven more by top-down processes since they are
bserved during active listening tasks. Though, the role of top-down vs.
ottom-up processing in perceptual warping has not been formally in-
estigated. We address these questions in the current study. 

When viewed through the lens of nonlinear dynamic systems, this
rocess can be described as a shifting of the perceptual space to accom-
odate variability within categories ( Tuller et al., 1994 ). Such warpings

n perceptual space are likely driven by prefrontal (i.e., memory) brain
egions that track ongoing stimulus history and adjust current percepts
ccording to listeners’ expectations and perceptual biases ( Carter et al.,
022 ; Hansen et al., 2006 ). We do not yet know how far down the audi-
ory system this top-down modulation of speech representation contin-
es, however. While fronto-temporal pathways drive auditory stimulus
ncoding in cortex, the corticofugal system (i.e., cortico-collicular effer-
nt pathways) can also modulate responses in the auditory brainstem
y fine-tuning sound representations according to listening demands
 Suga, 2008 ; Suga et al., 2000 ). Additionally, corticofugal fibers en-
ance speech processing prior to its arrival in cortex through attention-
ependent gain control ( Lai et al., 2022 ; Price and Bidelman, 2021 ). This
akes the corticofugal system a prime candidate for tuning speech rep-

esentations and possibly building nascent acoustic-phonetic structure
t subcortical levels. 

The frequency-following response (FFR) has been used as a win-
ow to characterize early, subcortical sound encoding along the au-
itory system. The FFR is a scalp-recorded potential evoked by sus-
ained stimuli (such as speech) occurring ∼7-10 milliseconds after stim-
lus onset with putative source(s) in the auditory brainstem (i.e., in-
erior colliculus) ( Bidelman, 2018b ; Gardi et al., 1979 ; Langner and
chreiner, 1988 ; Smith et al., 1975 ; Sohmer et al., 1977 ), and not
ochlear origin ( Skoe and Kraus, 2010 ). Early work in animal models lo-
alized the FFR to several subcortical auditory nuclei including cochlear
ucleus (CN), inferior colliculus (IC), and medial geniculate body (MGB)
 Dunlop et al., 1965 ; Oatman and Anderson, 1980 ; Sohmer et al., 1977 ).
hile most previous work has shown a subcortical origin of the FFR, re-

ent neuroimaging studies have suggested cortical contributions to the
esponse at low ( < 100 Hz) frequencies when recorded via magnetoen-
ephalography (MEG) ( Coffey et al., 2016 ; Gorina-Careta et al., 2021 ;
oss et al., 2020 ; Tang et al., 2016 ) or intracortically ( Gnanateja et al.,
021 ). Latency modeling also supports more cortical involvement for
ow-frequency stimuli ( Tichko and Skoe, 2017 ), where cortical neu-
ons are still able to robustly synchronize ( Joris et al., 2004 ) before
ransformation to a rate-based representation at higher frequencies
starting as low as ∼50 Hz; Tang et al., 2016 ). Cortical contributions
o the FFR may be a contributing and/or modulatory factor of the
verall response, with stimulus frequencies and recording factors bi-
2 
sing more/less involvement of cortex to the scalp-recorded response
 Bidelman, 2018b ; Coffey et al., 2019 ). On the contrary, EEG work
as convincingly demonstrated that subcortical structures (i.e., mid-
rain and even auditory nerve) provide the largest contribution to the
calp-recorded FFR EEG for most of the frequency bandwidth of speech
 Bidelman, 2018b ; Bidelman and Momtaz, 2021 ). The FFR phase-locks
ith the time-varying, spectro-temporal features of complex sounds in-

luding fundamental frequency (F0) and harmonics ( Galbraith et al.,
995 ), as well as the first few formant frequencies up to its phase
ocking limits ( ∼1200 Hz) ( Aiken and Picton, 2008 ; Krishnan, 2002 ;
koe and Kraus, 2010 ). Given its unique time-frequency signature within
he EEG, FFRs have been used to characterize subcortical processing
f speech ( Bidelman and Powers, 2018 ; Bidelman and Momtaz, 2021 ;
idelman et al., 2013 ; Galbraith et al., 1995 ; Johnson et al., 2005 ;
usacchia et al., 2008 ; Russo et al., 2004 ; Skoe and Kraus, 2010 ) and
usical sounds ( Bidelman, 2013 ; Bones et al., 2014 ; Mankel and Bidel-
an, 2018 ), as well as track changes in neural encoding across the lifes-
an ( Anderson et al., 2012 ; Bidelman et al., 2019 , 2014b ; Liu et al.,
018 ). Of interest for this study is the use of FFRs in understanding the
rain’s earliest neural representations for speech and its sensitivity to
pecific phonetic features found in a listeners’ native language (cf. cat-
gories) ( Krishnan et al., 2010 ; Krishnan et al., 2009 ). 

To date, categorical representations have not been observed in brain-
tem FFRs, which, despite their ability to faithfully encode speech stim-
lus properties (e.g., formants), do not show strong evidence of cat-
gory structure. Using an active categorization task (/u/ to / ɑ / con-
inuum), Bidelman et al. (2013) found that neurometric identification
unctions derived from the auditory cortical ERPs ( ∼175 ms) predicted
isteners’ behavioral psychometric identification functions. In contrast,
imilar neurometric functions derived from brainstem FFRs did not. The
ata suggested that while category representations are observed at a
ortical level, brainstem is perhaps too early along the auditory pro-
essing hierarchy to observe abstract category structure. However, an
mportant caveat of this study was that FFRs, as in most subcortical stud-
es, were recorded under passive listening tasks. Indeed, Bidelman and

alker (2017) demonstrated that categorical representations only man-
fest with goal-directed attention and under active (but not passive)
peech identification tasks. Such attention-dependent effects might arise
ue to engagement of a wider network of category-sensitive brain re-
ions and reciprocal connections between inferior frontal and audi-
ory cortical areas which guide the formation of perceptual objects
 Alho et al., 2016 ; Carter and Bidelman, 2021 ; Carter et al., 2022 ). 

Nevertheless, some evidence shows category representations might
xist in subcortical structures. In guinea pig, auditory brainstem re-
ponses evoked by noise bursts separate in a nonlinear fashion (indica-
ive of categorical coding) based on the gap duration between noise
ursts ( Burghard et al., 2019 ). Studies that compared listeners fluent
n tonal (e.g., Chinese) vs. non-tonal (e.g., English) languages show
hat the former tend to have stronger pitch representation in subcor-
ical responses, but only for pitches that match native pitch contours in
heir language ( Krishnan et al., 2010 ; Krishnan et al., 2009 ; Xu et al.,
006a ). However, this effect does not carry over to similar acoustic ana-
ogues of the pitch changes that are not found in the native tone space
 Xu et al., 2006b ). Such findings suggest the presence of linguistically-
elevant (categorical-like) information in the brainstem, but itself does
ot indicate the active process of categorization is occurring locally
n brainstem, per se . Such findings could be explained by long term,
xperience-dependent plasticity ( Krishnan et al., 2012 ). This evidence
s further bolstered by findings of categorization-training studies that
how once individuals learn to identify novel speech stimuli their FFRs
re enhanced relative to more novice listening states ( Cheng et al., 2021 ;
eetzke et al., 2018 ). 

A possible mechanism that would enable FFRs to show real-time
ategory representations is attention/behaviorally-dependent control of
he corticofugal pathway. Attention heavily modulates responses from
ortical structures ( Bidelman and Walker, 2017 ; Harris et al., 2012 ;
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illyard et al., 1973 ; Zhang et al., 2014 ). It is perhaps expected then
hat categorical representations in the (cortical) event-related potentials
ERPs) are only observed under states of attentional load and active
peech labeling tasks ( Alho et al., 2016 ; Bidelman and Walker, 2017 ;
arter, 2018 ). Literature on attentional effects in human brainstem re-
ponses is mixed with some suggesting attentional enhancement of FFRs
 Galbraith et al., 1998 ; Hartmann and Weisz, 2019 ; Price and Bidel-
an, 2021 ) while others finding little to no effect of attention on the FFR

 Aiken and Picton, 2008 ; Dunlop et al., 1965 ; Galbraith and Kane, 1993 ;
arghese et al., 2015 ). If attention does influence the brainstem FFR,

hen actively categorizing speech during behavioral tasks should yield
easurable changes in the response. Moreover, stimulus order effects in

he FFR would provide new evidence that subcortical speech represen-
ations are not only influenced by local stimulus history but are indeed
uned by nonlinear perceptual dynamics as observed at a cortical level
 Carter et al., 2022 ). 

The current study aimed to evaluate (1) if speech representations,
s indexed by brainstem FFRs, show evidence of categorical represen-
ation or are strictly sensory-acoustic depictions of the speech signal;
2) whether attention and the process of categorization actively mod-
late speech-FFRs; (3) the effects of nonlinear dynamics (i.e., percep-
ual warping) on brainstem representations for speech. To this end,
e measured speech-FFRs while listeners performed a rapid phoneme

dentification task where tokens along an identical categorical contin-
um were presented in random vs. serial (forward or backward) order.
his design allowed us to induce more/less perceptual warping to bias

isteners’ categorical hearing. Serial order warps the perceptual space
nd corresponding cortical acoustic-phonetic representations for speech
 Carter et al., 2022 ). Here, we determined if subcortical FFRs similarly
arry category-level information that also changes with listeners’ on-
oing speech percept. We measured F0 and F1 attributes from FFRs to
uantify “voice pitch- ” and “formant timbre- ” related coding in neural
esponses. We first confirmed our novel paradigm shifted individual’s
erceptual category boundary measured behaviorally and thus success-
ully warped (biased) listeners’ percept. If brainstem speech coding is
ensitive to categorization, we hypothesized FFRs would show larger
mplitudes in sequential vs. random presentation orders due to listeners
etter predicting the phonetic category of the token in the former con-
ition, resulting in enhanced phase locking and thus stronger FFRs. We
nticipated these effects largely at the F1 frequency given this compo-
ent was the primary cue for category labeling in our stimuli. However,
itch (F0) and timbre (F1) can interact in the speech-FFR, resulting in
 modulatory effect on F0 dependent on the speech phoneme’s identity
 Krishnan et al., 2011 ). Thus, while we predicted it would remain in-
ariant across tokens, it was conceivable that F0 might also vary in a
ategory-dependent manner. We also anticipated relationships between
eural and behavioral measures if the FFR is indeed modulated by lis-
eners’ ongoing categorical percept. Our data reveal that category-level
eatures of speech are actively coded in FFRs, suggesting the acoustic-
honetic mapping of speech occurs more peripherally in the auditory
ystem than previously thought. 

. Materials & methods 

.1. Participants 

The sample included N = 16 young participants (24.2 ± 4.4
ears; 5 females) averaging 16.9 ± 3.2 years of education; n = 9
f these listeners also participated in Carter et al. (2022) . All were
ative American English speakers, had normal hearing (air conduc-
ion thresholds ≤ 20 dB HL; 250–8000 Hz), minimal musical training
 ≤ 3 years; average = 0.9 ± 1.2 years), and were mostly right-handed
mean = 78% ± 29% laterality) ( Oldfield, 1971 ). Each gave written in-
ormed consent in compliance with a protocol approved by the Univer-
ity of Memphis IRB. 
3 
.2. Stimuli & task 

We used a synthesized 7-token vowel continuum from /u/ to / ɑ /.
ach 100 ms token had a fundamental frequency of 150 Hz to min-
mize cortical contributions to the FFR which are restricted to low
 < 100-120 Hz) stimulus frequencies ( Bidelman, 2018b ; Brugge et al.,
009 ; Guo et al., 2021 ). While there is still controversy in the litera-
ure regarding the FFR’s generators ( Bidelman, 2018b ; Bidelman and
omtaz, 2021 ; Coffey et al., 2019 ; Gorina-Careta et al., 2021 ; López-
aballero et al., 2020 ), we have shown empirically that these 150 Hz
owel stimuli yield no identifiable “cortical FFR ” sources and originate
rom brainstem sources ( Price and Bidelman, 2021 ). That cortical con-
ributions to the FFR are silenced for frequencies > 150 Hz is further
upported by other converging near- and far-field electrophysiological
ata ( Bidelman, 2018b ; Guo et al., 2021 ). Adjacent tokens were sep-
rated by equidistant steps in first formant (F1) frequency spanning
rom 430 (/u/) to 730 Hz (/ ɑ /). We selected vowels over consonant-
owel (CV) syllables because our prior work showed vowels were more
rone to nonlinear perceptual effects than stop consonants ( Carter et al.,
022 ). We delivered stimuli binaurally through insert earphones (ER-
) at 80 dB SPL using rarefaction polarity with shielding to prevent
timulus electromagnetic artifact from contaminating neural responses
 Campbell et al., 2012 ; Price and Bidelman, 2021 ). Sound presenta-
ion was controlled by MATLAB coupled to a TDT RZ6 signal processor
Tucker-Davis Technologies, Alachua, FL). 

FFRs are sub-microvolt signals that typically require ∼1000 trials to
ully stabilize for the speech stimuli used here ( Bidelman, 2018a ). To use
ur categorization paradigm while simultaneously recording FFRs, we
mployed a modified version of the clustered interstimulus interval (ISI)
resentation paradigm as described in Bidelman (2015c) . This grouped
timuli in blocks containing rapid bursts of the same token (20 repeti-
ions; ISI = 10 ms) within a short train. This fast rate also limited the
ikelihood of cortical contributions to the response ( Chandrasekaran and
raus, 2010 ). After each train, the participant selected the phoneme they
erceived in the group with a binary keyboard response ( “u ” or “a ”), af-
er which the ISI was slowed (ISI = 400 ms) before the next grouping.
he clustered ISI sequence was then repeated to achieve the appropri-
te trial counts to detect the FFR (x1000 presentations per token per
ondition) and sufficient behavioral responses (x50 per token) ( Fig. 1 ). 

There were three active conditions based on how tokens were se-
uenced: (1) random presentation, and two sequential orderings pre-
ented serially between continuum endpoints and F1 frequencies (2) for-
ard /u/ to / ɑ / (430 Hz to 730 Hz), and (3) backward / ɑ / to /u/ (730 to
30 Hz). Forward and backward directions through the continuum were
xpected to produce perceptual warpings (i.e., hysteresis) ( Tuller et al.,
994 ). An additional passive condition in which the stimuli were pre-
ented in a random order while the listeners watched a captioned film
f their choice (but ignored the vowel stimuli) was used to test for atten-
ion effects on the FFR. The conditions were pseudo-randomly assigned
sing a Latin Square counterbalance ( Bradley, 1958 ). In a subset of lis-
eners ( n = 5), we measured the noise floor of our FFR recording setup to
urther rule out electromagnetic contamination of the neurophysiolog-
cal recordings (see Fig. 6 ). This used an identical setup to the passive
lock only with the earphone removed from listeners’ ear canal thereby
ecording only “neural noise ” ( Price and Bidelman, 2021 ). 

.3. EEG recording procedures 

Neuroelectric activity was recorded between Ag/AgCl electrodes
laced on the high forehead scalp ( ∼Fz) referenced to linked mastoids
M1/M2) (with a mid-forehead electrode as ground), as is common
or recording brainstem FFRs ( Bidelman et al., 2013 ; Billings et al.,
019 ; Gockel et al., 2013 ; Price and Bidelman, 2021 ; Shukla and
idelman, 2021 ). While other FFR montages are possible ( Skoe and
raus, 2010 ; Tichko and Skoe, 2017 ), this configuration is optimal for
icking up the vertically oriented dipole(s) in the brainstem which pro-
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Fig. 1. Schematic of the stimulus clustering paradigm for recording FFRs during active behavioral tasks [modified from Bidelman (2015c) ]. (A) Schematic of the 

stimulus presentation ordering and expected changes to speech identifications functions. Random vs. serial orderings (forward, backward) were achieved by presenting 

tokens from the speech continuum in clustered presentations (colored blocks; magnified in panel B) and varying the order between successive token cluster blocks. 

Continuum tokens are identified here as a red = /u/ to blue = / ɑ / color gradient). Serial vs. random order produces a shift in listeners categorical boundary locations 

due to perceptual warping. (B) Zoom of each token cluster shown in panel B. Speech tokens were presented rapidly in blocks of twenty (10 ms ISI) to evoke the FFR. 

At the end of the block, stimuli were paused, and the listener categorized the sound as /u/ or / ɑ /. Following the behavioral response, a 400 ms pause occurred and 

the next block was presented. The clustered ISI sequence was then repeated to achieve the appropriate token counts for the FFR (x1000 presentations per token per 

condition) and sufficient behavioral responses (x50 per token). 
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uce a scalp topography to the FFR that is maximal near the Fz elec-
rode ( Bidelman, 2015b ; Bidelman and Momtaz, 2021 ). Interelectrode
mpedances were kept ≤ 3 k Ω , except for three participants who had
mpedances ≤ 6 k Ω . EEGs were digitized at 10 kHz. We used BESA Re-
earch 7.0 (BESA, GmbH) to preprocess the EEG data. Responses were
poched (-5 – 105 window) and band-passed filtered (130–2000 Hz).
his passband effectively attenuates cortical activity of the EEG while
aintaining the high spectral resolution of the speech-FFR including the

oice F0 and its harmonics captured in the response ( Bidelman et al.,
013 ; Musacchia et al., 2008 ). We then utilized BESA’s automated
rtifact rejection scan to automatically reject artifactual trial epochs
xceeding a ± 75 μV threshold criterion (peak min -to-peak max voltage
ifference). This threshold was then manually adjusted in some sub-
ects to retain at least 95% of the trials. Importantly, average trial
ounts across the three active stimulus conditions were within < 10 tri-
ls of one another (random = 981.3 ± 16.8, forward = 987.7 ± 8.9,
ackward = 989.8 ± 8.4 trials). Additionally, formal measurements
f response “neural noise ” (i.e., pre-stimulus baseline RMS amplitude;
idelman et al., 2014a ; Krizman et al., 2021a ) confirmed noise lev-
ls were similar across the three active conditions [ F 2,320 = 0.0448,
 = 0.95]. This rules out the possibility that differences in FFRs across
onditions are due to trivial differences in recording quality. Clean trials
ere then averaged to derive FFRs for each vowel, stimulus direction,
nd participant. 

.4. Behavioral data analysis 

.4.1. Psychometric function analyses 

Identification scores were fit with the sigmoid P = 1/[1 + e − 𝛽1(x − 𝛽0) ],
here P is the proportion of trials identified as a given vowel, x is

he step number along the continuum, and 𝛽0 and 𝛽1 are the lo-
ation and slope of the logistic fit estimated using non-linear least-
quares regression ( Bidelman and Walker, 2019 ; Bidelman et al., 2014c ).
eftward/rightward shifts in 𝛽0 location for the sequential vs. ran-
om stimulus orderings would reveal changes in the perceptual bound-
ry characteristic of perceptual nonlinearity ( Tuller et al., 1994 ). RTs
reater than 2500 ms were considered outliers (e.g., attention lapses)
4 
nd were excluded from analysis (reject trials: 208; 1.23% across
ll conditions/subjects/tokens) ( Bidelman et al., 2013 ; Bidelman and
alker, 2019 ). We included RTs ≤ 250 ms, as we expected the task to

nduce faster RTs given a quasi-priming (anticipation) effect of the stim-
lus sequencing where the listener might decide on their percept during
he ongoing stimulus train. 

.5. Electrophysiological data analysis 

.5.1. FFR analysis 

FFR analyses were conducted using automated routines coded in
ATLAB. We computed the Fast Fourier Transform (FFT) of each FFR

o assess spectral content in each waveform. We then measured the F0
nd F1 of the spectra as the maximal FFT amplitude in a window ± 50
z around the nominal stimulus F0 and F1 frequencies. This was done

o accommodate any variability between the neural response and the
coustic signal, allowing for potential warping of the FFR F0/F1 fre-
uency due to category coding. As voice pitch (F0) was identical across
ur stimuli, we expected FFR F0 to remain invariant across tokens and
equence orders. In contrast, we expected differences in FFR F1 ampli-
udes where the stimuli are systematically changed to create the cate-
orical continuum. We compared the FFT amplitudes of F0 and F1 of
he same stimulus in different presentation conditions. Although not in-
icative of categorization, we also expected differences in F1 frequency
cross tokens since the FFR closely tracks changes in stimulus acous-
ics and we changed F1 frequency by the stimulus design (see Fig. 2d ;
idelman et al. (2013) ). 

.5.2. Neural adaptation 

As a control analysis to determine if neural adaptation occurred
iven the repetitive nature of our stimulus trains, we compared the F0
mplitude of the first and the last response of each train, across all to-
ens and conditions (2 × 50 × 7 × 4 = 2800 trials). A reduction in
esponse ampltitude would indicate the fast repetition of our speech
timuli caused adaptation of neural responses ( Pérez-González and
almierca, 2014 ). Adaptation might inadvertently account for differen-

ial amplitude changes with stimulus presentation order and confound
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Fig. 2. Group level behavioral categorization. (A) Perceptual psychometric functions for phoneme identification when continuum tokens are presented in random 

vs. serial (forward: /u/ →/ ɑ / vs. backward: / ɑ / →/u/) order. (B) Psychometric function slope was steeper for serial (forward and backward) compared to random 

presentation order. (C) Reaction times for speech identification. Backward presentation led to slower RTs than random and forward presentations. Additionally, there 

was no token difference in RTs. (D) Boundary location did not vary at the group level (cf. individual differences; Fig. 3 ). Errorbars = ± 1 s.e.m. 
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ur interpretations of hysteresis and categorical representations in the
FR. 

.5.3. Response-to-response correlations 

To determine if stimulus ordering and thus perceptual warping bi-
sed listeners’ speech-FFRs we measured response-to-response correla-
ions between FFRs to the ambiguous token (Tk4) and the two endpoints
Tk1, Tk7) (cf. Yellamsetty and Bidelman, 2019 ). For each listener, we
ross-correlated their time waveform to Tk4 for each serial order (for-
ard, backward) with their time waveforms to both prototypical end-
oints (Tk1 and Tk7 in the random condition). Waveforms were allowed
o shift up to ± 10 ms relative to one another to account for differences in
elays ( Galbraith and Brown, 1990 ). This resulted in four correlation co-
fficients per listener, reflecting the degree to which the FFR to the oth-
rwise identical speech sound (Tk4) mirrored each of the two categories
i.e., Tk1 or Tk7). We reasoned that if the ambiguous token is more like
ne of the prototypical tokens than the other as a function of direction,
t would indicate that the encoding of the signal was modulated by the
erceptual warping induced by recent stimulus history ( Yellamsetty and
idelman, 2019 ). We additionally ran correlations between Tk1/7 and
k4 FOR/BACK as further validations and control analyses. 

.5.4. Neural decoding of speech categories from single-trial FFRs 

We used Gaussian kernel, linear support vector machine (SVM) clas-
ifiers to determine if the categorical identity of speech stimuli could be
5 
ecoded via FFRs (e.g., Lai et al. 2022 ; Xie et al. 2019 ; Yi et al. 2017 ).
e used log-transformed F0/F1 amplitudes as the input features for

VM decoding. Amplitude measures were selected, as opposed to F0/F1
requencies, as the latter would be trivial in separating FFRs since
hey closely follow the low-frequency pitch and formant cues of speech
 Bidelman et al., 2013 ). Two binary classifications were considered:
odels assessing the classification of (i) FFRs elicited by the two cat-

gory prototypes (i.e., Tk1 = /u/ vs. Tk7 = / ɑ /) and (ii) FFRs elicited by
he otherwise ambiguous Tk4 in forward vs. backward serial directions.
he first model was used largely as a control analysis since we expected
obust separability of FFRs to differing vowel tokens and thus near ceil-
ng classifier performance. In these analyses, for example, the classifier
ttempted to predict the FFR response on a given trial (F0amp n ) as being
voked by either an /u/ or / ɑ / stimulus. Of more interest was the sec-
nd model, which tested whether FFRs to a category-ambiguous speech
ounds were warped based on listeners’ trial-to-trial phonetic hearing. 

For each classifier, we extracted F0 and F1 amplitudes from single-

rial FFR spectra, resulting in N = 27000 observations per condition.
e randomly split the data into training (80%) and test (20%) sets

 Mahmud et al., 2021 ). We then trained an SVM via the fitckernel func-
ion in MATLAB using the default box constraint ( C = 1 ) and regular-
zation ( 𝜆= 1/ n = 4.63e-05) tuning parameters, where C = 1/( 𝜆n). This
lgorithm maps data from a low- to high-dimensional space, then fits
 linear model in the high-dimensional space by minimizing the reg-
larized objective function. We used 5-fold cross validation to prevent
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Fig. 3. Individual level psychometric functions. Representative subjects ( n = 3) 

who showed (A) hysteresis (B) critical boundary and (C) enhanced contrast per- 

ceptual response patterns. 
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odel overfitting ( Mahmud et al., 2021 ). In this procedure, the dataset is
artitioned into k equal-sized subsamples (folds) containing N = 21600
80% training) and N = 5400 (20% testing) observations. For each fold,
he SVM learned the support vectors from the training data that opti-
ally segregated the FFR attributes (i.e., F0 and F1 amplitudes) based

n the class labels (e.g., Tk1 vs. Tk7 or Tk4 for vs. Tk4 back ). This was
epeated for each fold. The final classifier performance represented the
ean decoding accuracy (i.e., % of matches between predicted and true

lass labels) averaged across folds. Classification performance was then
ssessed using conventional classifier metrics [i.e., accuracy, d-prime,
eceiver operating characteristic curve (ROC), confusion matrices]. 

.6. Statistical analysis 

We used one-way mixed model ANOVAs (PROC GLIMMIX, SAS®
.4; SAS Institute, Inc.) to analyze the psychometric data, with a fixed
ffect for presentation condition (3 levels: random, forward, and back-
ard), and a random effect for subjects. RTs and FFR data (i.e., F0 and F1

requency and amplitudes) were analyzed using two-way, mixed model
NOVAs (subjects = random factor) with fixed effects of condition (3

evels: random, forward, backward; 4 th level for FFR: passive) and to-
en (7 levels). We normalized the heavily bimodal distribution of the
orrelation data by taking the absolute value of the difference of the in-
ividual’s correlation value and the mean of all correlations [i.e., abs(X
 mean(X)]. 

We used orthogonal quadratic trend contrasts on F0 and F1 ampli-
ude measures to test for the characteristic U-shape pattern inherent
o categorical responses ( Pisoni, 1973 ). These a priori contrasts (coeffi-
ients = 5, 0, -3, -4, -3, 0, 5) assessed whether FFR amplitudes to to-
en prototypes were larger (or smaller) than ambiguous tokens near
he continuum’s midpoint ( Carter and Bidelman, 2021 ; Mankel et al.,
020 ) and therefore differentiated speech sounds with strong vs. weak
ategory percepts. We anticipated that if category-level information is
ncoded in brainstem responses, a similar quadratic trend would arise. 

We conducted general linear mixed effects (GLME) regression mod-
ls ( fitglme in MATLAB) to assess whether a linear combination of
he neural measures (i.e., F0/F1 frequencies and amplitudes) pre-
icted behavior [e.g., behav ∼ FFR F0amp + FFR F0freq + FFR F1amp +
FR F1freq + (1|sub)]. Subjects served as a random factor in these mod-
ls. Separate GLMEs were run for each behavioral metric (i.e., slope;
oundary; RTs). Responses across the three orders were pooled for data
eduction. 

. Results 

.1. Behavioral data 

Listeners perceived the vowels categorically in all presentation
rderings as seen in Fig. 2 . Slopes varied with presentation order
 F 2,30 = 11.21, p = 0.0002). The random condition was significantly shal-
ower than both the forward ( p = 0.0001) and backward ( p = 0.0367)
onditions. The location of the categorical boundary only showed
arginal shifts with presentation order at the group level ( F 2,30 = 3.14,
 = 0.0576). These findings are consistent with notions that categorical
peech percepts are stronger when stimuli are presented in a sequential
ompared to random order ( Carter et al., 2022 ). 

RTs also varied with presentation order ( F 2,312 = 18.27, p < 0.0001).
ategorical decisions were slower for backward versus forward
 p < 0.0001) and random ( p < 0.0001) presentations. This finding in-
icates that the backward condition slowed processing speed in catego-
ization. However, there was no difference in the RTs between ambigu-
us and prototypical tokens ( F 6,300 = 1.38, p = 0.22). This suggests that
nder our clustered stimulus paradigm, listeners may have decided the
ategory while the stimulus train was still ongoing. Additionally, no in-
eraction occurred between presentation order and token ( F 12,300 = 0.38,
6 
 = 0.97). While the group level categorical boundary was largely stag-
ate, individual-level data showed stark differences as a function of pre-
entation order ( Fig. 3 ). 

.2. Electrophysiological data 

Figs. 4 and 5 show time-domain FFR waveforms for select conditions
nd tokens. These waveforms were analyzed in the frequency domain
o determine differences in F0 and F1 frequency and amplitude. 

Fig. 6 shows FFR spectra in response to Tk1 across stimulus or-
erings (random, forward, backward) and attention conditions. Fig. 7
hows F0 and F1 measures more clearly. We found that F0 amplitude
iffered as a function of condition ( F 3,405 = 7.78, p < 0.0001) and to-
en ( F 6,405 = 5.76, p < 0.0001). Post-hoc testing revealed the passive F0
mplitudes were smaller than all three active listening conditions (back-
ard, p = 0.0005; forward, p = 0.0047; random, p = 0.0001). The token

ffect was attributed to smaller F0 amplitudes in response to /u/ tokens
Tks 1-3) compared to / ɑ / tokens (Tks 5-7) ( p < 0.0001). Conversely,
1 amplitude did not differ as a function of condition ( F 3,405 = 0.31,
 = 0.8189), but did as a function of token ( F 6,405 = 131.79, p < 0.0001).
hese results indicate (expectedly) the FFR is sensitive to the acous-
ic properties of speech across the stimulus continuum. More critically,
hey indicate subcortical speech representations are enhanced with ac-
ive attention. The F0 frequency also shifted due to stimulus orderings
 F 3,405 = 3.95, p = 0.0086; order x token interaction: F 18,405 = 1.82,
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Fig. 4. FFR time domain waveforms (Tk1) contrasting stimulus presentation orders and attentional state (i.e., active vs. passive listening). 

Fig. 5. FFR time domain waveforms comparing responses to mid- and endpoint tokens (Tk1, Tk4, Tk7) for the random condition. Note the larger FFR amplitudes 

for the endpoint vs. midpoint token indicative of a neural enchancment to category prototypes. 
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 = 0.02). However, this effect was due to a small but measurable ∼5
z increase in FFR F0 for the passive relative to other conditions. In con-

rast, F1 frequency was not significantly affected by presentation order
 F 3,405 = 0.04, p = 0.99). 

We found FFRs across the categorical continuum displayed a
uadratic trend for both F0 ( F 6,405 = 5.76, p < 0.0001) and F1
 F 6,405 = 131.79, p < 0.0001) measures. Quadratic trends showed a U-
hape for the F0 amplitudes in the backward ( p = 0.0316) and forward
 p = 0.0149) conditions, but not for the random ( p = 0.1651) or pas-
ive ( p = 0.5883) conditions. In terms of effect size (Cohen’s- d ), serial
rderings produced a much stronger U-shape in the F0 data than either
he random or passive conditions ( d for = 5.79, d back = 5.10, d rand = 3.29,
 passive = 1.28). Said differently, the serial orderings produced a pattern
f responses consistent with perceptual warping that was ∼1.65x SDs
arger than that of the random condition and upwards of ∼4.5 SDs larger
elative to passive condition. These results suggest that, despite identi-
al F0s in the stimuli, the FFR showed categorical coding of F0 only in
7 
equential presentation orders (which elicited perceptual warping). For
1, quadratic trends were highly significant ( p < 0.0001) for the F1 am-
litudes in all conditions ( d for = 13.2 , d back = 15.6, d rand = 14.2, d passive 

 15.1). These results suggest that the FFR F1 also showed categorical
oding regardless of attention or presentation order. However, in con-
rast to F0, visual inspection of the F1 trends appeared less U-shaped
nd largely dominated by stronger responses at the /u/ (low-) vs. / ɑ /
high-frequency) end of the continuum (Supplemental Fig. S3), which
ould be explained by the roll off in phase-locking. Critically however,
either the F0 nor F1 quadratic patterns were observed in the physi-
al acoustic stimuli (Supplemental Fig. S4) nor FFRs simulated from a
ell-established model of the auditory nerve that captures important

ochlear processing including spectral decomposition and compressive
onlinearities ( Bidelman, 2014 ; Zilany et al., 2014 ) (Supplemental Fig.
5). In general, model FFRs across tokens more closely mirrored the pat-
ern observed in the stimulus acoustics rather than actual FFRs. These
ndings suggest, at least qualitatively, that the category coding effects
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Fig. 6. FFR spectra (Tk1) in the backward, random, and forward conditions vs. the passive condition. Insets show F0 and F1 analysis windows. 

Fig. 7. FFR F0 and F1 measures as function of stimulus order and token. (A) The F0 amplitude of active conditions (i.e., random, forward, and backward) were 

greater than the F0 amplitude in the passive condition. (B) F1 amplitudes were not affected by stimulus direction nor attention. (C) F0 amplitudes (pooling orders) 

showed a U-shape pattern suggesting categorical coding across speech tokens ( Pisoni, 1973 ). (D) F1 amplitudes (pooling orders) were significantly larger for /u/ vs 

/ ɑ / ends of the continuum. Errorbars = ± 1 s.e.m. 

8 



J.A. Carter and G.M. Bidelman NeuroImage 269 (2023) 119899 

Fig. 8. FFRs show category-specific coding. Comparison of response-to- 

response correlations between FFRs to the ambiguous speech token (Tk4) pre- 

sented in backward and forward conditions with responses to either prototypical 

vowel (Tk1/7). Higher correlation coefficients indicate a stronger similarity to 

that speech category (i.e., /u/ or / ɑ /). Errorbars = ± 1 s.e.m. 
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1 Adj-R 2 are adjusted for the number of fixed-effects in the model 

and are computed using the error (SSE) and regression (SSR) sum of 

squares. SSE is based on the conditional response of the linear mixed- 

effects model. Thus, MALTAB’s fitglme() adj-R 2 takes into ac- 

count both the fixed and random effects in the model. For details see, 

https://www.mathworks.com/help/stats/generalizedlinearmixedmodel- 

class.html 
bserved in empirical FFRs are not due to stimulus acoustics or the out-
ut of cochlear transformations, per se , but instead reflect central, top-
own modulations from listeners’ perceptual state and attention. 

We measured the F0 of the first and last tokens in each train to quan-
ify possible neural adaptation to the rapid stimuli in our clustered pre-
entation paradigm. We found no difference in F0 amplitude between
he first and last response in each train ( F 1,615 = 0.20, p = 0.6551;
upplemental Fig. S1). This confirms there was little to no adaptation
f brainstem responses due to the rapid succession of auditory stimuli
 Bidelman and Powers, 2018 ) and thus rules out the confound that serial
rder effects in the FFR data were due to mere neuronal fatigue. 

Fig. 8 shows response-to-response correlations between Tk4 (am-
iguous token) and Tk1/7 (prototypical tokens) FFRs as a function
f presentation order. We found a main effect of presentation order
 F 1,45 = 4.39, p = 0.0417) and a significant interaction between pre-
entation order and token ( F 1,45 = 4.92, p = 0.0317). The interaction
uggests Tk4 FFRs showed stronger similarity to Tk1 in the forward di-
ection but stronger correspondence to Tk7 in the backward direction.
y token, the direction contrast was stronger at Tk1 ( p = 0.0038) than
k 7 ( p = 0.93). These findings suggest that the FFR to an otherwise

dentical (and categorically ambiguous) speech token was modulated
y perceptual state. That is, FFR neural representations were warped to-
ard the direction of the vowel prototype under each stimulus context

i.e., mirroring Tk1 for forward stimulus ordering and Tk7 for backward
timulus ordering). 

In attempts to isolate whether F0 or F1 drove these effects, we band-
ass filtered FFRs around each component (F0: 130-160 Hz; F1: 400-
50 Hz) and recomputed the response-to-response correlations. The or-
er x token interaction was observed for F0 ( F 1,45 = 3.95, p = 0.052)
ut not F1 ( F 1,45 = 2.32, p = 0.13). While marginal, these findings im-
ly that F1 likely did not contribute to the perceptual coding observed
n Fig. 8 and was therefore dominated by the F0 component. 

To ensure these inter-FFR correlations were not trivially common
cross all tokens, we also conducted response-to-response correlations
or Tk1/7, which was not significant ( r mean = 0.07, p = 0.4985), and
k4 FOR/BACK which was significant ( r mean = 0.32, p < 0.0001). These
9 
ndings indicate that responses to acoustically (and categorically dis-
inct) tokens were not correlated with one another and that responses
o the same token carrying different perceptual encodings still retains
he general acoustic encoding of the signal. 

Neural classifier performance is shown in Fig. 9 . Single-trial de-
oding on FFR amplitudes was expectedly robust for classifying the
honeme endpoints of the continuum (i.e., Tk1 vs. Tk7). At the group
evel, cross-validated accuracy was 86% AUC (d-prime = 1.49), result-
ng in few confusions between true and predicted token labels and thus
ighly discriminable responses ( X 

2 = 8468, p < 0.0001). Individual
owel decoding from FFRs was equally good and well above chance
evels (one-sample t-test against 50%: t 14 = 27.62, p < 0.0001). These
ontrol decoding analyses indicate that phonetic properties of vowel
rototypes (i.e., /u/ vs. / ɑ /) were easily distinguished via spectral am-
litude features carried in FFRs. 

Having confirmed FFRs carry sufficient information on the category
dentity of speech signals, we next asked whether responses to cate-
ory ambiguous speech (Tk4) showed differential encoding depending
n the direction of stimulus presentation. As confirmed behaviorally,
orward vs. backward serial ordering of the stimulus continuum induced
erceptual shifts that changed listeners’ percept of otherwise identical
peech sounds (see Fig. 2 ). Single-trial decoding was expectedly poorer
or this more challenging classification problem given lower separabil-
ty of the data. However, FFRs were surprisingly distinguishable based
n stimulus order (i.e., Tk4 for vs. Tk4 back ). Group level classification
ccuracy was 62% AUC (d-prime = 0.45) with more frequent vowel con-
usions —the SVM tended to predict more Tk4 responses as stemming
rom the backward condition, suggesting a slight bias in labeling. Still,
he confusion pattern was highly discriminable ( X 

2 = 66.5, p < 0.0001)
nd individual decoding was well above chance ( t 14 = 9.26, p < 0.0001).
hese neural decoding results complement the response-to-response cor-
elations and indicate that FFRs to otherwise identical speech stimuli are
arped on a trial-by-trial basis according to the surrounding stimulus

ontext. In subsequent analyses, we focus on the relevance of these dy-
amic neural effects to behavioral categorization of speech. 

.3. Brain-behavior relationships 

We used GLME regression models to determine whether neural FFR
easures predicted aspects of listeners’ categorical perception. For 𝛽0

boundary location), the multivariate model indicated FFR measures
redicted ∼63% of the variance in behavior (adjusted R 

2 = 0.63) 1 . Eval-
ating individual terms revealed a significant predictor in FFR F1 fre-
uency on listener’s categorical boundaries ( t 11 = 2.43, p = 0.03). For
1 (psychometric slopes), the multivariate model predicted ∼71% of
he variance (adjusted R 

2 = 0.71). Evaluating individual terms revealed
 significant predictor in FFR F0 frequency on listener’s psychometric
lopes ( t 11 = 2.87, p = 0.015) (see Supplemental Tables S1 and S2).
hese results suggest that subcortical coding of different speech features
redicts listeners’ vowel categorization. 

. Discussion 

We measured brainstem FFRs concurrent with behavioral responses
o acoustic-phonetic continua presented in various stimulus orderings
sequential vs. random presentation) and attentional states (active vs.
assive tasks). Our innovative stimulus task establishes a new paradigm
o obtain FFRs and behavioral responses to speech concurrently. Using

https://www.mathworks.com/help/stats/generalizedlinearmixedmodel-class.html
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Fig. 9. Single trial FFR decoding reveals evidence of phonetic encoding and perceptual warping depending on stimulus presentation order. SVM classification of 

FFRs decoding ( top row ) category prototypes (Tk1 = / ɑ / vs. Tk7 = /u/) and ( bottom row ) stimulus order (direction) for ambiguous Tk4 responses. First column , raw FFR 

F0 and F1 amplitudes extracted from N = 27000 single trial FFRs. Second column , SVM output showing the decision boundary and posterior class labels predicted after 

SVM training. Black = misclassified observations. Third column, cross-validated confusion matrices show the proportion of predicted vs. true class labels. Higher values 

along the diagonal denote more successful separability of FFRs and better decoding performance. Fourth column , ROC curves. Thin lines = single subjects; thick line; 

grand average across participants; dotted line = chance performance. Fifth column, average ROC area under the curve (AUC) across listeners for classifier performance 

(cf. %-accuracy). ( Top row ) Prototypical categories (Tk1 vs. Tk 7) are easily distinguished via neural FFRs, resulting in few confusions and high classification accuracy. 

Note the large separability in F1 (but not F0) amplitude measures in the raw data. ( Bottom row ) Decoding FFRs to Tk4 presented in the forward vs. backward serial 

directions, which produce perceptual hysteresis. Decoding performance is well above chance even in light of the low separability of the data (i.e., all Tk4 trials) 

suggesting FFRs contain adequate information to code listeners’ trial-by-trial speech percepts. TPR, true positive rate. FPR, false positive rate. AUC, area under the 

(ROC) curve. ∗ ∗ ∗ ∗ p < 0.0001; Errorbars = ± 1 s.e.m. 
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his novel approach, we show that attention modulates the encoding of
peech as early as the auditory midbrain and moreover, that FFRs en-
ode speech categorically. Interestingly, while we anticipated changes
ould occur at F1 , more salience effects were observed at F0 . We sus-
ect this may be due to the F0 component being a more dominant
river of the overall FFR waveform than the weaker amplitude F1 (e.g.,
ig. 6 ) and thus more easily modulated by top-down influences. Indeed,
rior studies show that corticofugal influences on the FFR are largely re-
tricted to low-frequency portions of the speech signal ( Lai et al., 2022 ;
rice and Bidelman, 2021 ). 

.1. FFR responses obtained concurrent with active task 

Most speech-FFR studies drawing putative links between auditory
rainstem coding and aspects of speech perception have used passive
istening tasks ( Aiken and Picton, 2008 ; Bidelman et al., 2013 ; Skoe and
raus, 2010 ; Slugocki et al., 2017 ). This has led to claims that FFRs re-
ect a perceptual correlate of behavior. However, in the absence of an
ctive perceptual task in previous work, establishing this link is more
ifficult and speculative. Recent advancements in stimulus paradigms
ave shown that active, perceptual challenging tasks can induce modu-
ations in the speech-FFR, revealing brainstem representations are sub-
ect to attentional gain modulation ( Price and Bidelman, 2021 ). Through
se of our innovative clustered stimulus paradigm, we further demon-
trate a feasible method to obtain speech-FFRs simultaneous with an
ctive behavioral speech listening task. Our data provide new and im-
ortant evidence that speech-evoked brainstem responses, like their cor-
ical ERP counterparts ( Carter et al., 2022 ), are actively modulated by
10 
isteners trial-by-trial perception of the speech signal and its surrounding
ontext. Consequently, we infer FFRs reflect more than mere sensory-
coustic representations, and instead carry true perceptual correlates of
he speech signal. 

Behaviorally, we found the slopes of listeners’ psychometric func-
ions were steeper in sequential vs. random presentation ordering. This
grees with previous findings ( Carter et al., 2022 ) and suggests that
equential presentation solidifies categorization as individuals rapidly
ecide what category to assign the sound stimulus. Additionally, serial
resentation of tokens in our paradigm likely strengthens the sensory
echoic) memory trace which would reinforce individuals’ decision by
he time they execute their behavioral response ( Näätänen et al., 2007 ;

inkler et al., 1993 ). 
Surprisingly, RTs were slower in backward vs. both the forward and

andom conditions. On the contrary, we would have expected the ran-
om condition to produce longer RTs than either sequential condition.
Ts may have been slower in the backward condition due to a greater
alience of rising than falling frequency stimuli ( Carter et al., 2022 ;
uo et al., 2007 ; Schouten, 1985 ). Perhaps in our paradigm, listeners
ubtly slowed their identification to ensure they were selecting the cor-
ect sound, whereas in forward and random conditions, the change in
1 frequency was perceptually salient enough to keep RTs rapid. Addi-
ionally, RT patterns in conventional speech categorization tasks typi-
ally show an inverted U shape across the continuum, with RTs slowing
round the categorical boundary compared to the prototypical tokens
 Pisoni and Tash, 1974 ). We did not observe this in the current study.
his may relate to listeners deciding on their percept early in the stimu-

us train, then selecting their response once the train ends. That is, RTs
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ight be locked more to the ending of the entire stimulus train than to
he processing of the phoneme, per se . Despite the lack of token effect,
Ts were however modulated by the overall ordering of speech, indi-
ating that decision speeds can be facilitated by recent stimulus history
i.e., context). 

.2. Brainstem FFRs are modulated by attention 

Strikingly, we found that speech-FFRs (F0 amplitudes) were much
arger in active vs passive conditions, confirming that attention actively
hapes neural encoding at the brainstem level. We had expected to
lso see changes in FFR F1 amplitudes as a function of presentation
rder, but this was not observed (see Fig. 7 ). Attention effects in the
FR thus seem localized to low-frequency components of the speech
ignal ( Holmes et al., 2018 ). The effect of attention on any property
f brainstem responses has been highly equivocal in previous work;
ome studies support ( Galbraith et al., 1998 ; Hartmann and Weisz, 2019 ;
rice and Bidelman, 2021 ) and others refute ( Aiken and Picton, 2008 ;
unlop et al., 1965 ; Galbraith and Kane, 1993 ; Varghese et al., 2015 )
ttentional effects on FFRs. 

Attentional modulation of FFRs observed here is presumably driven
y corticofugal fibers that enhance brainstem activity selectively ac-
ording to perceptually-relevant information in cortex. Animal studies
ave shown the corticofugal fibers shape subcortical function during
hort-term learning ( Bajo et al., 2010 ; Suga, 2008 ). In humans, corti-
ofugal mechanisms are thought to be particularly important in diffi-
ult speech-listening environments ( Lai et al., 2022 ; Price and Bidel-
an, 2021 ). These effects could relate to the short-term memory mod-
lation caused in nonlinear dynamical processing of speech, wherein
he encoding of ambiguous speech tokens at lower levels are contin-
ously shaped by higher cortical structures. Indeed, perceptual warp-
ng effects on primary auditory cortex responses are thought to arise
rom prefrontal memory areas ( Carter et al., 2022 ). It is possible such
erceptually-relevant biasing percolates back to even more peripheral
uditory areas (i.e., brainstem) as suggested by the category tuning of
FRs observed here. In this regard, corticofugal fibers might carry cat-
gory identity from cortex further down the system, rendering changes
n speech representations at the brainstem level. Previous anatomical
ork has demonstrated cortico-collicular connections originating in the

rontal lobes and terminating in the brainstem that contain GABAer-
ic and glutamatergic neurons. These connections are thought to shape
esponses in inferior colliculus, a major source of the FFR, through com-
lex excitatory and inhibitory interactions ( Liu et al., 2023 ; Olthof et al.,
019 ). Consequently, the necessary circuitry is in place for higher-level
rain regions (frontal lobe) to modulate early signal encoding in the
FR (e.g., Liu et al. 2023 ). Our data provide strong evidence of atten-
ional modulation of subcortical responses, possibly originating in the
istal frontal lobes. Though future studies are needed to confirm this
ypothesis. 

Our task requires listeners to perform online categorization judg-
ents and continuously monitor the speech stimuli. Previous tasks

valuating brainstem-attention effects have used simple tasks (e.g.,
ounting, detection, attention redirection, etc.) ( Galbraith et al., 1998 ;
albraith and Kane, 1993 ; Varghese et al., 2015 ) or oddball paradigms
 Hartmann and Weisz, 2019 ; Price and Bidelman, 2021 ), which may al-
ow listeners to periodically disengage from the task and fail to produce
FR-attention effects. We have recently shown that task disengagement
as strong influences on cortical arousal which simultaneously causes
uctuations in speech FFR responses ( Lai et al., 2022 ). Our task ar-
uably requires more sustained attention which may account for the
uch larger (x2-3) brainstem attentional effects we find in the present

tudy compared to previous reports ( Price and Bidelman, 2021 ). Our
ndings agree with some studies demonstrating improvements in FFR
ncoding under active attention ( Forte et al., 2017 ; Galbraith et al.,
998 ; Krizman et al., 2021b ; Lai et al., 2022 ; Price and Bidelman, 2021 );
owever, other studies have shown the opposite, with no attentional
11 
odulation of FFR encoding (cf. Galbraith and Kane, 1993 ; Hillyard and
icton, 1979 ; Varghese et al., 2015 ). Attentional effects in the FFR are
tronger for low (93-109 Hz) vs. high (217-233 Hz) frequency stimuli,
hich suggests cortical components of the FFR —when present for low-

requency stimuli —might be more prone to attentional effects compared
o those from subcortical sources ( Holmes et al., 2018 ). Additionally,
artmann and Weisz (2019) found that while attentional effects do oc-
ur in the FFR MEG for low F0s, it is primarily responses from right pri-
ary auditory cortex that show attentional change. Our study differs

rom these two studies in our use of speech stimuli with higher frequen-
ies (both F0 and F1) which generate FFRs from brainstem structures
ith little to no contribution from cortex ( Bidelman, 2018b ; Price and
idelman, 2021 ). 

.3. Brainstem FFRs carry category-level information (perceptual 

orrelates) of speech 

Another novel finding revealed by our innovative task is that FFRs
ncode speech in a categorical fashion. Category representation in the
FR is unlikely to be local to the midbrain. Rather, we posit that corti-
ofugal fibers modulate early sound encoding of the stimulus to fit the
erception of the token ( Suga, 2008 ; Suga et al., 2000 ). We have pre-
iously shown that at the level of cortex ( Carter et al., 2022 ), activity
n frontal brain regions influences the encoding and subsequent per-
eption of category-ambiguous speech sounds (cf. Tk4) ( Carter et al.,
022 ). Previous work has also demonstrated that changes in percep-
ion can drive enhancements of the FFR ( Cheng et al., 2021 ), suggest-
ng speech processing is influenced by predictions of the percept. Our
esponse-to-response correlations and neural decoding results support
erceptual encoding in the FFR. Brainstem responses to otherwise am-
iguous speech tokens were biased towards a given prototype depend-
ng on the direction of presentation. These results were independent of
eural adaptation ruling out explanations that our FFR warping effects
ere driven by the normal physiological byproducts of rapid auditory
rocessing (i.e., refractory of neuronal firing). In contrast to our data,
ome animal studies have shown stimulus-specific adaptation in the au-
itory midbrain ( Pérez ‐González et al., 2005 ). Nevertheless, the lack of
daptation in the present data suggests our FFRs are likely not cortical
n nature, since cortical neurons would be expected to show significant
esponse diminishment for the rapid stimulus rates used here. Together,
his indicates the FFR is not merely a passive representation of the acous-
ic speech signal but is dynamically shaped by higher-order perceptual
rocesses, and by surrounding stimulus context. Such active modula-
ion of brainstem representations might help simplify speech decisions
pon arrival to auditory cortex ( Asilador and Llano, 2021 ; Lesicko and
effen, 2022 ). 

Importantly, our speech stimuli were designed with F0s well above
ortical phase locking limits as reported in both humans and animal
odels ( Brugge et al., 2009 ; Gnanateja et al., 2021 ; Guo et al., 2021 ;

oris et al., 2004 ; Wallace et al., 2000 ). This reduces the possibility that
ur FFR results are conflated by cortical contributions ( Coffey et al.,
016 ). This, in addition to the lack of neural adaptation (characteristic
f more peripheral auditory nuclei), strongly supports a brainstem locus
f our findings. 

It is useful to ask whether the pattern(s) observed in FFRs can be ex-
lained by acoustic factors of the stimuli or more peripheral signal trans-
ormations, e.g., due to cochlear nonlinearities. Given its more central
enerators, FFRs presumably reflect the combined output of peripheral
onlinearities from the cochlea, signal processing local to the midbrain,
nd any top-down processing due to cortical/perceptual modulations.
e can rule out explanations due to loudness differences (Supplemen-

al Fig. S4), as all tokens were matched in sound level and perceptual
oudness (94.1 ± 1.0 phon) ( Moore et al., 1997 ). The patterns observed
n the FFR are also unlikely attributed to acoustical F0 or F1 spectral
mplitude differences. In fact, an acoustic analysis showed a linear de-
lining pattern in the acoustic F0 amplitude and invariance in F1 (Fig.
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4). Cochlear processing leading to the FFR can be highly nonlinear and
s such, FFRs might not be expected to exactly mirror the acoustic stim-
lus input ( Bidelman and Bhagat, 2020 ). However, simulated FFRs from
n auditory nerve model, which reflect the output of important cochlear
ransformations (but not attention or perceptual processing), failed to
redict the empirical data and instead more closely resembled acoustic
hanges in the stimuli (Fig. S5). While qualitative, these results are in
tark contrast to the patterns observed in neural FFRs, which showed
nhancements for endpoint tokens at both sides of the continuum vs.
he midpoint. In this regard, our findings that speech-FFRs to otherwise
dentical speech tokens of the continuum were (i) enhanced during ac-
ive categorization compared to their passively-evoked counterparts, (ii)
how a unique response profile compared to their acoustic or cochlear
ounterparts, and (iii) were warped in the direction of listeners’ pho-
etic labeling provides strong evidence for a neuro-perceptual origin of
ur data. 

Our findings are reminiscent but contrast results of
handrasekaran et al. (2009) , who showed FFRs to an otherwise

dentical speech stimulus (/da/) presented in a variable vs. predictable
rder led to differences in F1 (but not F0 encoding). Several dif-
erences in study design may account for these divergent findings.
ursory differences in their CV vs. our vowel stimuli aside, context in
handrasekaran et al. (2009) was manipulated at the between-token

evel whereas we varied context on a higher-order scale (between
rains). Moreover, serial presentation in our forward and backward
onditions leads to strong predictive hearing as listeners can fully
nticipate subsequent tokens along the continuum. Contrastively, the
redictable nature of stimuli in Chandrasekaran et al. (2009) was
chieved via the repetition of a single token. Third, their use of alter-
ating vs. single polarity stimulus presentation (as used here) can lead
o a differential weighting of F0 vs. F1 in the speech-FFR ( Kumar et al.,
014 ), which may alter context-dependent effects in a frequency-
ependent manner. Perhaps more critically, the context-dependence
bserved in Chandrasekaran et al. (2009) was observed under passive
istening, so it is not clear how those findings relate to the perception of
he eliciting speech stimuli vs. other, more generalized, auditory mech-
nisms, per se (e.g., stimulus-specific adaptation) ( Pérez ‐González et al.,
005 ). In contrast, speech-FFRs in the present study were recorded
uring an active speech identification task which led to context-order
ffects at both F0 and F1. 

Two alternative theories suggest how ambiguous phonemes are cat-
gorized and might account for category-level coding we find in FFRs:
he Natural Referent Vowel (NRV) and the Native Language Magnet
NLM) models. The NRV proposes that spectral prominences that are
asier to detect lead to directional asymmetries in category discrimina-
ion tasks. Contrastively, the NLM proposes that directional asymme-
ries are caused by the vowel space being biased towards native pho-
etic prototypes —built through long-term statistical learning — which
ct as perceptual magnets for ambiguous phonemes ( Masapollo et al.,
017 ; Zhao et al., 2019 ). Our findings have support from both models,
ut more strongly support the NLM within the context of categorization.
erception of ambiguous tokens was driven by listeners categorizing the
ound as one of the prototypical tokens (i.e., NLM). This interpretation is
urther bolstered by the U shape found in FFR responses, which suggests
here is pull from both prototypes. However, the fact Tk4 responses were
ore strongly correlated with Tk1 FOR than Tk7 BACK responses suggests

here may be a slight bias towards vowels with more prominent F0/F1
onfiguration, consistent with NRV. It could be that the vowel biasing
s more strongly related to NLM in our study as we used a continuum
ith prototypes that were both native to our listeners. Previous studies

upporting NRV interpretations of FFR and direction-dependent vowel
oding effects compared within-category stimuli ( Masapollo et al., 2017 ;
hao et al., 2019 ). 

Additional evidence that the FFR reflects aspects of speech percepts
as our finding that response components were associated with lis-

eners’ categorical boundary and the slope of their psychometric func-
12 
ion. We and others have shown that perception begins to differenti-
te phonemes categorially early in the cortical hierarchy and no later
han primary auditory cortex ( Bidelman and Lee, 2015 ; Bidelman and

alker, 2019 ; Carter and Bidelman, 2021 ; Chang et al., 2010 ). Here,
e extend these findings by showing category-specific neural represen-

ations extend as low as the brainstem. As the FFR is largely driven
y midbrain regions ( Bidelman, 2018b ), the link between FFR and psy-
hometric measures is consistent with notions that low-level auditory
epresentations carry information regarding signal clarity, strength of
ategorization, and vowel identity ( Binder et al., 2004 ). In contrast, FFR
easures did not predict the speed of listeners’ decisions. RTs are how-

ver largely driven by higher-order frontal brain regions ( Binder et al.,
004 ), so it is perhaps not surprising that FFRs failed to predict percep-
ual speeds (but see Galbraith et al. 2000 ). Interestingly, while catego-
ization in FFRs differentiated along the response amplitude, the response
requency accounted for variability in the brain-behavior relationships
see Tables S1, S2). The explanation for this dichotomy in driving differ-
nt aspects of categorical behaviors is unclear. But it is conceivable that
FR amplitude might relate more strongly with the underlying strength
f the categorical percept whereas frequency may relate more to the
ovement of those percepts along the acoustic dimension producing
arping. 

Collectively, the fact that FFRs are strongly modulated by atten-
ion and show category-specificity strongly suggests brainstem FFRs
arry perceptual correlates related to how listeners ultimately hear the
peech signal. Broadly, our findings indicate top-down processes modu-
ate brainstem representations to fit the anticipated speech percept. Our
ata bolster notions that the FFR carries perceptually relevant cues re-
ated to phonetic representations and is thus more than just a neural
irror of the acoustic signal. Together, our findings suggest that mid-

rain plays a vital role in the active perception and categorization of
peech. 
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Figure S1. Brainstem FFRs show insignificant adaptation in response to rapid speech trains. 
Shown here are FFR spectra around the F0 frequency for the start and end tokens of the 
stimulus trains (pooling tokens and conditions). Shaded areas = ±1 s.e.m. 

 

 

 
Figure S2. F0 amplitudes showed a significant quadratic trend (U-shape) in forward and 
backward conditions. Despite an appearance, the quadratic pattern was not significant for the 
random and passive conditions. Error bars = ±95% CI.  
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Figure S3. F1 amplitudes showed a significant quadratic trend (U-shape) in all four conditions. 
Error bars = ±95% CI.  

 

 

 

 

 

 

 

Figure S4.  Acoustic properties of the stimulus tokens. (left) Loudness computed using the 
model of Moore et al. (1997) based on the ISO 532.2 standard. Loudness varies minimally (< 1 
phon) across tokens. (middle) F0 spectral amplitudes. Note the declining linear trend in F0 as 
compared to the quadratic (categorical) U-shape observed in FFR data (see Fig. S2). (right) F1 
amplitudes. Acoustically, F1 is stronger than F0 owing to its boost near the formant resonance. 
However, unlike in FFRs, F1 varies little across the continuum. 
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Simulated FFRs from a computational AN model 
We used a computational model of the auditory nerve (AN) (Zilany et al., 2009; Zilany and 
Carney, 2010; Zilany et al., 2014) to simulate brainstem FFRs (Bidelman, 2014; Dau, 2003). 
Details of this phenomenological model and implementation to model FFRs are provided in 
Bidelman (2014). The model incorporates several important nonlinearities observed in the 
auditory periphery, including cochlear filtering, level-dependent gain (i.e., compression) and 
bandwidth control, long-term adaptation, as well as two-tone suppression. Model tuning curves 
were fit to the characteristic frequency (CF)-dependent variation in threshold and bandwidth for 
high-spontaneous rate (SR) fibers in normal-hearing cats (Miller et al., 1997). The stochastic 
nature of AN responses is accounted for by a modified non-homogenous Poisson process, 
which includes effects of both absolute and relative refractory periods and captures the major 
stochastic properties of single-unit AN responses (e.g., Young and Barta, 1986).  

The AN model was used to simulate the scalp-recorded FFR using methodology 
described by Dau (2003) and detailed in Bidelman (2014) (Fig. S5A). This approach is based 
on the assumption that the far-field FFR recorded at the scalp is a convolution of an elementary 
unit waveform (i.e., impulse response) with the instantaneous discharge rate from a given 
auditory nucleus (Dau, 2003; Goldstein and Kiang, 1958). 

We submitted 50 repetitions of each vowel to the model to evoke AN spike-trains. Spikes 
were generated from each of 100 model fibers (CFs: 125-11000 Hz; high spontaneous rate 
units) to simulate the discharge pattern across the cochlear partition. Activity from the entire 
ensemble was then summed to form a population post-stimulus time histogram (PSTH). The 
PSTH was then convolved with a unitary response function, simulating the impulse response of 
nuclei from the auditory brainstem (for details, see Dau, 2003). Finally, pink noise (1/f 
distribution) was added to simulate the quasi-stochastic nature of EEG noise (Bidelman, 2014; 
Dau, 2003; Granzow et al., 2001). Resulting model waveforms provided a mirror approximation 
of the time-frequency characteristics of true FFRs recorded in our human listeners (Fig. S5B,C). 
As with the empirical FFR recordings, we measured model F0 (150 Hz) and F1 (400-800 Hz) 
amplitudes from response spectra. This allowed us to qualitatively compare true FFRs 
(recorded during an active perceptual warping task) with model responses, which similarly 
reflect the output of cochlear processing (e.g., spectral decomposition, nonlinearities) but are 
not subject to attention, perception, and/or higher-level cortical processing as in the empirical 
recordings.  

Figure S5 shows model FFRs to tokens along the vowel continuum. In general, model 
response F0 and F1 amplitudes followed a similar pattern to the F0 and F1 trends of the 
acoustic stimuli (cf. Fig. S4). Critically, model FFRs did not show enhancements near category 
endpoints (i.e., U-shape) as in the empirical FFRs (e.g., Figs. 7-8). These findings suggest, at 
least qualitatively, that category coding effects observed in the FFR are not due to stimulus 
acoustics or cochlear nonlinearities, per se, but instead reflect top-down modulations from 
listeners’ perceptual state and attention.  
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Figure S5. Computational model architecture used to simulate scalp-recorded FFRs (Bidelman, 
2014). (A) The acoustic stimulus is input to a biologically plausible model of the auditory 
periphery (Zilany et al., 2014). The model provides a simulated realization of the neural 
discharge pattern for single AN fibers. After middle-ear filtering and hair cell transduction and 
filtering, action potentials are generated according to a nonhomogeneous Poisson process. 
Spikes were generated from 100 model fibers (CFs: 125-11000 Hz) to simulate neural activity 
across the cochlear partition and summed to form a population PSTH for the entire AN array. 
Population PSTHs were then convolved with a unitary response function which simulates the 
impulse response of nuclei within the auditory brainstem (Dau, 2003). Additive noise simulated 
the inherent random fluctuations in scalp-recorded EEG. (B,C) Model FFR time waveforms and 
response spectra. (D,E) Model F0 and F1 amplitudes follow a similar trend as the acoustic 
F0/F1 (cf. Fig. S4) but do not show the categorical pattern as observed in true FFRs (cf. Fig. 7, 
main text).  
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Table S1. GLME model fit parameters for predicting categorical boundary (β0) location 
from FFRs measures.  

Name Estimate SE t-stat DF p-value Lower Upper 

Intercept 0.16 0.18 0.93 11 0.37 -0.22 0.55 

F0 Amp -15.33 16.29 0.94 11 0.36 -51.19 20.52 

F0 Freq -0.003 0.005 0.59 11 0.57 -0.01 0.009 

F1 Amp -474.42 454.37 1.04 11 0.32 -1474.5 525.64 

F1 Freq* 0.010 0.004 2.43 11 0.033* 0.0009 0.018 

Coefficients and significance tests for individual predictor variables from neural responses on 
the categorical boundary. *p < 0.05 

 

 

Table S2. GLME model fit parameters for predicting psychometric slope (β1) from FFRs 
measures.  

Name Estimate SE t-stat DF p-value Lower Upper 

Intercept -0.04      0.06       -0.65  11 0.53       -0.18      0.10 

F0 Amp -2.04 5.77 -0.35 11 0.73 -14.74 10.66 

F0 Freq* 0.01 0.001 2.87 11 0.015* 0.001 0.01 

F1 Amp 329.63 160.96 2.05 11 0.065 -24.65 683.9 

F1 Freq -0.001 0.001 -0.99 11 0.34 -0.005 0.002 

Coefficients and significance tests for individual predictor variables from neural responses on 
the psychometric slope. *p < 0.05 
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